ATTENTION ALL REQUEST FOR PROPOSALS (RFP) HOLDERS

RFP NO. 322033 - ADDENDUM NO. 1

STREAM CORRIDOR RESTORATION – BLACK EARTH CREEK

PROPOSALS DUE: TUESDAY, AUGUST 30, 2022, 2:00 PM. DUE DATE AND TIME ARE NOT CHANGED BY THIS ADDENDUM.

This Addendum is issued to modify, explain or clarify the original Request for Proposal (RFP) and is hereby made a part of the RFP. Please attach this Addendum to the RFP.

PLEASE NOTE THE FOLLOWING CONSULTANT SUBMITTED QUESTIONS:

1) **Q**: Has there been any dialog with the utility company about the overhead transmission line that crosses the site?

A: No

2) Q: Has there been or will there need to be archeological surveying?

A: An archeological survey has not been done. One will need to be completed as part of the project.

3) Q: Does the County have any soil borings taken within or near the project area?

A: No the county does not have any soil borings within or near the project.

4) Q: What level of construction observation can be expected - will the County's representative provide daily oversight and the consultant be brought in during crucial habitat installations or project milestones? Or will consultant staff be present on a near-daily basis throughout construction?

A: The consultant will need to provide the necessary oversight and on site construction observations to perform all items under F. of the *Scope of Work*. A county representative will be available and may assist in providing oversight. Specifics will be established within the *Professional Services Agreement*, examples of which can be found under Article 2.G, attached at the end of the RFP.

5) Q: The MN SQT guidance lists water quality, macroinvertebrates, and fish parameters of the SQT as optional. Has the County decided if these optional parameters will be required? If they are, has the County had any discussions regarding County or DNR staff (eg. fisheries biologists) assisting in collecting and analyzing these data?

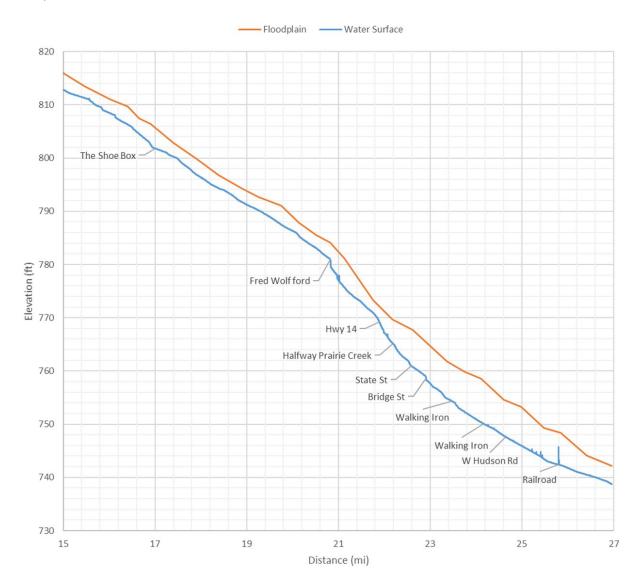
A: The physicochemical and biology parameters will not be required in the applying the MN SQT to Black Earth Creek. However, if a consultant can make a strong case that their design would cause measureable improvements in one or more of the parameters, they may be included. The county does not have plans to collect physicochemical or biological data for this project, but may do so if recommended by a consultant. There are no recent macroinvertebrate or physicochemical data available around the project reach. DNR fisheries completed a trout assessment of Black Earth

Creek in 2019, which included sites near the project reach and could be used baseline fish data: <u>https://dnr.wisconsin.gov/sites/default/files/topic/Fishing/Reports_DaneBlackEarthCreek2019WatershedTrout.pdf</u>.

If any additional information about this Addendum is needed, please contact Ryan Shore at 608/445-0109, shore@countyofdane.com.

Sincerely,

Ryan L Shore


Project Manager

Enclosures:

Preliminary Assessment of Black Earth Creek at Walking Iron County Park MNSQTv2.0 Black Earth Creek AppendixB MNSQT Field Forms Black Earth CreekBank Erosion Summary Table w/ BEHI & NBS Forms Preliminary Assessment of Black Earth Creek at Walking Iron County Park Matt Diebel, Dane County Land & Water Resources Department

Black Earth Creek near Mazomanie has high eroding banks that are a sediment source to the stream. The cause of the high banks appears to be that the stream has incised to convey increased peak flows from Halfway Prairie and Wendt Creeks. These two streams have very low gradients and no evidence of natural channels and were probably slow-moving wetland systems prior to agricultural development of their valleys. Channelization would have greatly increased peak flows from these two valleys. Black Earth Creek would have either flooded more frequently downstream of the confluence of these streams or if the banks were armored in the Village of Mazomanie or the channel was cleared of debris, these activities would have facilitated incision of the stream bed. The longitudinal profile of the stream and floodplain elevations supports this hypothesis - the stream bed drops away relative to the floodplain right at the confluence. Given that the hydrology of Halfway Prairie and Wendt Creeks is unlikely to be restored to its natural state and the increasing flooding in Mazomanie is unacceptable, the best option for reducing bank erosion is to lower the grade of the stream banks and establish vegetation.

Longitudinal profile of water surface and floodplain elevations on Black Earth Creek from upstream of the Village of Black Earth to the Dane-Iowa County line. Elevations were taken from the 2017 Dane County LiDAR DEM.

Programmatic Goals

Select:

iviitigation	- Credits	

Reach Description	Restoration Approach
Reach ID:	Expand on the programmatic goals of this project:
Describe this reach and reach break criteria:	
Lat:	Explain the restoration potential of this project based on the programma
Long: Reference Stream Type: C	(based on catchment assessment form):
Reference stream type is the stream type that should occur in a given landscape setting given the hydrogeomorphic processes occurring at the watershed and reach scales. Channel evolution scenarios should be used to inform the reference stream type in the MNSQT.	
Describe the rationale used to select the reference stream type:	Explain the goals and objectives for this project:
	Goals:
	Objectives:
	Goals:

NOTICE: If you find errors or problems, please email <u>StPaulSQT@usace.army.mil</u>

The Stream Quantification Tool Credits:

Lead Agency: U.S. Army Corps of Engineers, St. Paul District Contributing Agencies: U.S. Environmental Pro-

U.S. Environmental Protection Agency Minnesota Board of Water and Soil Resources Minnesota Department of Natural Resources Minnesota Pollution Control Agency

Contractors:

Ecosystem Planning and Restoration (EPR) through a contract with the U.S. Environmental Projection Agency (Contract No. EP-C-17-001). Stream Mechanics as a sub-contractor to EPR

Version 2.0 Version Last Updated

10/27/2020

tic goals

Insert Aerial Photo of Project Reach

Catchment Name and Number: Watershed Name (HUC 8) and Number: Rater(s): Date:

Overall Watershed Condition	Purpose: This form is used to determine the project's restoration potential. The catchment
Restoration Potential	assessment is performed on the catchment and contributing area for the project reach. Note the contributing area may be downstream as well, as in the case where a dam exists downstream
	which restricts movement/recovery of fishes.

CATCHMENT ASSESSMENT **Description of Catchment Condition** Rating Categories (P/F/G)Poor Fair Good Substantial reduction or augmentation of natural Moderate reduction or augmentation of natural flow Minimal reduction or augmentation of natural flow Flow Alteration - Water Use (Hydrology) 1 flow regime reaime regime. 2 Impervious Cover (Hydrology) Impervious Cover (IC) Index Score of 40% or less. IC Index Score Between 41% and 70%. IC Index score of 71% or greater. Perennial Cover (PC) Index Score of 40% or less PC Index Score of 41 to 70% or less -> Altered PC Index Score of 71% or greater -> Minimally 3 Land Use Change (Hydrology) = % PC remaining -> Highly Altered Landscape. Landscape Altered Landscape. Major roads located in or adjacent to project reach Few major or minor roads in or adjacent to project No major or minor roads in or adjacent to project 4 Roads (Hydrology) and/or high road density in catchment. reach. Moderate road density in catchment. reach. Low road density in catchment. 5 Percent Forested (Hydrology) ≤20% >20% and <70% ≥70% Percent Agricultural Land 6 ≥ 70% >20% and <70% <20% (Hydrology/Physicochemical) IHA Analysis: Use the Rate and Frequency of IHA Analysis: Use the Rate and Frequency of Change IHA Analysis: Use the Rate and Frequency of Change metric (H M FV RFC) and the metric (H M FV RFC) and the Frequency and Change metric (H M FV RFC) and the 7 Flashiness Index (Hydrology) Frequency and Duration of High/Low Pulses metric Duration of High/Low Pulses metric (H M FV FDP) - Frequency and Duration of High/Low Pulses metric (H M FV FDP) - scores of 40% or less. scores of between 41% to 70%. (H M FV FDP) - scores of 71% or more. Riparian Connectivity - Vegetation Riparian Connectivity (RC) Index Score of 40% or 8 RC Index Score Between 41% and 70%. RC Index score of 71% or greater. (Geomorphology) less High sediment supply from upstream bank erosion Low sediment supply. Upstream bank erosion and Moderate sediment supply from upstream bank erosion and surface runoff. Use scores for Soil Erosion surface runoff is minimal. Use scores for Soil and surface runoff. Use scores for Soil Erosion 9 Sediment Supply (Geomorphology) Susceptibility and for Steep Slopes Near Streams Erosion Susceptibility and for Steep Slopes Near Susceptibility and for Steep Slopes Near Streams to to estimate sediment supply - scores of 40% or Streams to estimate sediment supply - scores of estimate sediment supply - scores between 41 to 70%. less 71% or greater. On or immediately upstream or downstream of a Minnesota Integrated Report (305(b) and On or immediately upstream or downstream of a No adjacent waterbodies listed as not supporting a 303(d)) designated use support status (Note: waterbody in Category 5 OR in Category 4c (i.e., waterbody in Category 4a or 4b (i.e., active mitigation of 10 designated use (i.e., all designated uses either impairments with atmospheric deposition as designated use impairment not actively being designated use impairment through approved TMDL or unassessed or in Category 1, 2, or 3). a source should be excluded*) nitigated). other control mechanisms). Low levels of Livestock (animal units) in area and Localized Potential Pollution Sources, Animal Moderate Livestock (animal units) in area and potential Extensive Livestock (animal units) in area and 11 low likely access to stream - scores of 71% or potential access to stream - scores of 40% or less. access to stream - scores between 41% and 70%. Units (Physicochemical) areater. Longitudinal Connectivity of the stream Aquatic Connectivity (AC) Index Score of 40 or 12 AC Index Score Between 41% and 70%. AC Index score of 71% or greater. network (Biology) less Stream Species Quality Fish /Stream Species Stream Species Quality Fish /Stream Species Quality Stream Species Quality Fish /Stream Species 13 Organism Recruitment (Biology) Quality Invertebrates - scores of 40% or less. Invertebrates - scores between 41 to 70%. Quality Invertebrates - scores of 71% or greater. 14 Ditched or straightened streams (Hydrology) Altered Watercourse Index Score of 40% or less. Altered watercourse score between 41 and 70% Altered watercourse score - 71% or greater. 15 Other

MADE PLLPV PLLPV				are provided for the evaluation of			
Combine Index Nomby Magnificies Rate and Progenomy of Change Annuel Extension Extension Offlight Concenters 1 7 67 87 82 93 93 1 70 67 87 87 87 87 1 60 55 86 75 87 87 87 11 60 55 86 79 87 87 87 11 60 55 86 79 87 48 44 14 64 79 88 47 88 47 16 71 44 63 71 97 98 48 16 71 43 63 93 49 44 16 60 55 93 94 44 17 73 88 71 88 93 44 16 63 93 44 44 44 44 44	MAJOR HUC-8	H_I_FV Flow Variability.	H_M_FV_MM	H_M_FV_RFC			
8 76 62 93 65 9 83 69 25 66 77 87 50 110 64 66 77 87 50 50 111 64 64 77 67 64 64 77 67 64 113 74 64 63 71 77 67 59 114 71 64 63 71 71 67 59 114 70 64 63 71 71 64 63 71 64 64 116 70 60 64 69 69 69 64 64 116 64 63 71 73 63 64 64 64 117 61 23 71 63 64							
0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 11 0.0 0.0 0.0 0.0 0.0 0.0 11 0.0 0.0 0.0 0.0 0.0 0.0 12 7.1 0.0 0.0 0.0 0.0 0.0 16 7.1 0.4 0.0 0.0 0.0 0.0 0.0 17 7.1 0.4 0.0	7	76		67	82	99	55
10 60 50 60 70 87 80 11 60 60 70 67 60 12 74 44 64 70 60 48 14 70 60 48 70 60 48 14 70 60 71 97 59 50 15 71 64 63 71 97 60 48 16 60 70 73 60 50 71 73 60 50 10 66 50 71 73 60 50 61 50 21 61 13 75 48 60 51 60 51 22 51 14 70 65 60 40 60 50 22 61 35 73 65 60 40 60 50 50 23 61 35 73 65 60 40 60 50 51 50 50 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
11 68 50 66 70 67 60 44 13 74 64 64 70 60 46 14 00 64 65 71 67 68 14 00 60 65 71 67 68 14 00 50 71 73 68 68 17 73 75 68 59 69 51 18 60 50 71 73 68 52 20 65 50 66 59 69 56 21 63 64 57 69 64 56 22 61 30 73 55 69 64 23 61 30 71 67 60 56 24 61 30 71 67 60 56 25 61 30 71 67 60 56 26 61 30 60 50 57 60 56 27 71 53 60 50 57 60 56 27 71 53 50 60							
12 74 84 64 70 86 48 13 74 84 67 85 84 47 14 88 88 67 85 84 47 14 71 64 67 75 85 84 47 14 73 75 60 76 96 86 48 14 66 60 71 73 66 62 19 66 60 71 73 66 62 21 74 61 62 71 73 66 62 22 74 63 64 53 66 66 64 23 61 23 71 53 94 64 64 24 61 23 71 63 94 64 64 25 61 38 71 67 86 64 64 24 61 71 60 50 64 64 25 61 38 73 74 66 64 26 61 64 61 64 66 64 27							
13 74 84 79 80 84 47 15 71 64 63 71 97 49 16 71 64 63 71 97 49 16 71 64 63 71 97 49 16 71 65 50 65 50 65 50 65 50 65 50 65 50 65 50 65 50 65 50 65 50 65 50 66 50 60							
14 60 68 67 68 94 47 15 71 64 63 71 97 60 16 71 64 63 71 97 60 17 73 75 60 60 60 60 16 60 60 71 73 98 62 20 65 60 60 60 60 60 21 73 59 60 85 93 65 22 54 13 75 86 94 94 64 23 61 30 71 67 48 94 64 24 61 30 71 67 49 66 64 25 61 50 73 60 94 44 64 26 64 30 71 67 96 68 64 27 71 63 64 30 96 44 64 30 64 65 73 60 96 65 27 71 63 64 63 97 95 65 28							
16 71 67 69 17 73 75 60 88 98 48 14 00 50 71 73 89 48 14 00 50 71 73 89 48 14 00 50 71 73 89 81 14 00 50 71 73 89 81 15 75 36 89 81 81 22 64 13 75 36 94 41 23 81 45 75 86 94 41 24 81 25 75 86 94 49 25 61 35 75 86 96 41 26 64 75 86 96 41 13 30 66 40 65 71 96 81 41 31 86 40 61 41 100 41 41 41 41 41<							
16 71 17 73 75 60 80 48 18 66 50 71 73 86 42 18 66 50 71 73 86 42 19 66 69 69 69 69 61 60 21 67 89 66 69 69 61 60 22 63 43 73 68 64 64 64 23 63 43 73 68 64 64 64 24 61 29 76 65 69 44 65 25 61 38 71 63 64 69 64 64 64 64 64 64 64 64 64 64 64 65 66 69 64 65 66 64 64 63 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66							
17 73 75 60 86 80 80 80 82 18 69 50 71 73 80 62 20 65 50 71 73 80 62 21 74 50 66 60 80 80 84 64 21 74 50 66 80 80 84 64 23 43 44 75 86 80 84 64 24 61 29 76 60 84 84 84 25 66 64 71 67 90 85 85 26 66 44 71 67 90 85 85 27 71 85 80 64 61 86							
16 66 50 71 73 98 92 19 00 50 71 73 98 52 20 65 50 66 50 60 63 63 63 21 73 50 60 66 63 63 64 22 51 13 75 38 94 44 24 63 71 63 94 44 25 61 93 71 63 94 94 26 64 71 67 90 93 93 27 71 58 64 71 93 94 43 28 66 51 52 73 90 96 43 31 66 40 64 61 90 41 32 66 72 50 70 95 55 33 66 69 53 70 90 90 41 34 67 73 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
19 00 00 71 73 08 92 20 65 60 65 60 65 63 65 21 73 49 69 65 63 65 63 65 22 54 13 75 48 64 64 64 23 61 23 77 64 64 64 64 24 61 24 77 67 60 66 66 25 66 61 62 61 98 68 25 66 61 62 61 90 61 31 66 40 62 61 63 98 63 32 66 60 61 63 90 61 61 33 64 46 61 63 98 63 63 33 64 61 64 63 65 65 65 34 66 73 41 76 60 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
20 60 90 90 90 91 21 73 59 90 90 85 93 94 22 43 13 75 38 90 45 22 63 43 76 55 90 44 24 61 29 70 55 90 40 25 61 38 71 63 94 30 26 64 51 77 63 90 40 25 66 54 40 70 63 96 40 37 68 40 90 63 90 90 51 38 64 40 91 64 90 91 90 91 39 66 72 50 69 90 91 90 91 39 66 70 90 16 93 90 41 55 66 72 50 60 90 41 54 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1 73 96 96 85 93 96 22 54 13 73 48 94 64 23 63 43 73 48 94 64 24 61 28 71 63 94 30 25 61 38 71 63 94 30 26 61 38 71 63 94 30 27 70 89 71 63 94 30 28 64 35 73 61 96 97 29 64 35 73 61 96 97 31 66 40 61 63 98 63 33 64 40 61 63 98 63 34 67 90 16 93 90 41 35 66 72 55 70 96 93 37 68 93 88 90 45 37 41 73 88 90 62 37 43 71 73 41 88 90 41 90 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
225413752896434323634376559644246129766394302566847167908027718364716790802866847167908080296684736086403166606060808032666060616390533364647063906380346790537090808035667253709080803668734178808080376060537090808038667341829080803966734182908080306673536660618030687473418290803068747341829080316974738080808032646353666361633471734182 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
23 03 43 73 48 94 94 24 01 20 73 63 94 39 25 01 38 71 63 94 39 27 71 68 04 74 99 58 28 08 35 73 03 96 49 30 88 40 30 63 96 49 31 66 40 64 71 96 51 32 66 70 96 90 61 34 67 90 16 93 90 47 34 66 50 53 70 95 55 35 66 73 70 95 56 36 74 79 42 79 90 45 37 68 89 53 70 95 55 38 74 79 41 43 88 62 41 69<							
24 61 29 76 85 99 44 25 61 38 71 67 90 50 27 71 68 64 71 67 90 50 28 68 51 62 61 88 88 30 64 39 63 66 49 31 00 64 61 63 66 49 32 65 30 64 61 63 66 41 33 64 44 61 64 63 66 41 34 66 52 65 65 65 65 65 37 66 50 63 70 55 65 65 37 74 75 43 78 100 45 64 41 68 71 73 41 62 68 51 47 74 75 43 68 68 51 64 63 64 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
25 01 38 71 03 94 30 27 71 58 04 74 00 58 28 64 35 73 69 66 49 31 68 40 69 66 49 31 68 40 68 71 49 61 32 64 40 68 71 49 61 33 66 40 68 71 49 61 34 67 40 61 61 60 90 71 35 66 50 53 70 55 55 38 74 70 52 79 90 58 39 68 50 53 70 95 56 39 68 73 41 88 90 57 41 69 71 73 41 82 88 62 43 71 73 41 82 88 61 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
28 66 54 71 67 00 50 28 66 51 62 61 68 58 29 64 53 73 60 66 49 30 58 46 39 63 66 49 31 68 40 68 63 68 51 32 66 50 64 63 68 53 34 67 90 16 93 90 41 35 68 72 63 70 66 55 37 68 73 44 76 100 45 41 69 73 44 76 100 45 41 69 71 73 41 82 88 67 44 71 73 41 82 88 67 61 44 71 73 41 82 88 63 51 57 64 53 63 63							
27 71 88 64 74 99 58 28 64 35 73 69 96 49 30 68 40 68 71 99 61 31 66 40 68 71 99 61 32 66 50 64 63 98 63 33 64 46 61 64 100 61 34 67 90 16 93 90 41 35 66 72 50 69 99 41 36 66 59 53 70 95 55 37 66 59 53 70 96 58 41 68 73 41 83 100 45 47 74 75 58 83 100 45 47 74 75 58 83 98 67 51 48 71 73 41 82 98 6							
22 64 51 62 61 98 64 30 68 40 63 96 40 31 66 40 68 71 90 61 32 65 60 64 63 98 63 33 64 46 61 64 100 51 34 67 90 16 93 90 47 36 66 72 50 69 53 70 95 55 38 74 79 62 77 90 63 70 95 55 38 74 79 62 77 90 68 62 65 41 69 71 43 68 93 67 64 62 62 62 62 62 62 62 62 62 62 62 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63							
29 64 35 73 69 96 40 30 88 40 68 71 96 51 32 65 50 64 63 96 53 33 64 48 61 64 63 96 53 33 66 72 50 90 90 91 41 35 66 72 50 90 93 55 37 66 59 53 70 95 56 38 74 79 52 79 99 58 39 68 73 44 78 100 45 47 74 75 58 88 03 57 39 68 73 41 82 98 62 49 71 73 41 82 98 62 49 71 73 41 82 98 62 51 64 53 53 66 95<							
30 58 46 39 63 96 49 31 66 50 64 63 98 53 32 65 50 64 63 98 53 33 64 46 61 64 00 61 34 67 90 16 93 90 47 38 66 59 53 70 95 55 38 74 79 52 79 98 68 39 74 79 52 79 98 68 41 69 71 43 88 100 45 41 69 71 43 88 93 67 48 71 73 41 82 98 62 50 71 73 41 82 98 62 51 53 65 96 51 16 66 96 51 52 64 53 53 66 96<							
31 66 40 68 71 99 51 32 65 50 64 63 98 53 33 64 46 61 64 100 51 34 67 90 16 93 90 47 35 66 72 50 60 99 41 36 66 59 53 70 95 55 37 66 59 52 79 99 56 39 68 73 44 78 100 45 41 69 71 73 41 82 98 62 49 71 73 41 82 98 62 51 64 53 53 66 95 51 53 64 53 53 66 95 51 54 63 47 60 62 99 48 55 63 47 60 62 99 48							
32 65 50 64 63 98 53 33 64 66 61 63 90 47 35 66 72 50 69 99 41 36 66 50 53 70 95 55 37 66 59 53 70 95 55 38 74 79 52 73 99 99 56 39 74 79 52 73 99 99 56 41 50 71 43 88 100 45 44 71 73 41 82 98 62 50 71 73 41 82 98 62 51 53 53 53 66 65 51 52 64 53 53 66 65 51 53 63 47 60 62 99 48 54 63 47 60 62 99<							
33 64 46 61 64 100 51 34 66 72 50 60 90 41 35 66 72 50 60 90 41 35 66 50 53 70 95 55 37 66 50 53 70 95 55 38 74 79 99 95 55 39 68 73 41 70 96 57 41 60 71 43 88 93 67 44 71 73 41 62 86 62 50 71 73 41 62 86 62 51 64 53 53 66 95 51 52 64 53 53 66 95 51 52 64 63 72 72 96 48 56 65 74 60 62 97 48 56							
34 67 90 16 93 90 47 35 66 59 53 70 96 55 38 74 79 52 70 96 55 38 74 79 52 70 96 53 39 68 73 44 78 100 45 41 69 71 43 88 100 45 44 71 73 41 82 86 62 50 71 73 41 82 86 62 50 71 73 41 82 86 62 51 64 53 53 66 95 51 52 64 53 53 66 95 51 52 64 53 53 66 95 51 54 63 47 60 62 88 37 55 64 53 63 72 93 46							
35 06 72 50 00 99 41 36 66 59 53 70 95 55 37 06 59 52 79 99 99 55 38 74 79 52 79 99 99 45 41 69 71 43 88 100 45 47 74 75 53 88 93 57 46 71 73 41 82 88 62 50 71 73 41 82 88 62 51 64 53 53 66 95 51 52 64 53 53 66 95 51 52 63 47 60 62 99 48 56 65 74 60 62 99 48 56 65 74 60 62 99 48 56 62 74 60 72 72<							
36 66 59 53 70 95 55 38 74 79 52 79 90 58 38 74 79 52 79 90 58 39 88 71 44 76 100 45 41 69 71 43 88 93 57 44 71 73 41 82 96 62 49 71 73 41 82 98 62 51 64 53 53 66 95 51 53 64 53 53 66 95 51 54 63 47 60 62 99 48 55 63 47 60 62 99 48 55 63 47 60 53 91 44 56 67 46 72 72 98 49 57 67 46 72 72 98 49							
37 66 59 53 70 96 55 38 74 70 52 79 96 53 39 68 73 44 78 100 45 41 69 71 43 88 193 57 48 71 73 41 82 98 62 50 71 73 41 82 98 62 51 64 53 53 66 95 51 52 64 53 53 66 95 51 52 64 53 53 66 95 51 54 63 47 60 62 99 48 56 65 74 60 56 91 54 56 65 74 60 56 91 54 56 62 39 60 55 91 54 56 62 39 60 55 91 54							
39 68 73 44 78 100 45 47 74 75 58 88 93 57 48 71 73 41 82 98 62 49 71 73 41 82 98 62 50 71 73 41 82 98 62 51 64 53 53 66 95 51 52 64 53 53 66 95 51 53 63 47 60 62 99 48 56 65 74 60 58 98 49 56 65 74 60 58 91 54 56 67 46 72 72 98 49 56 67 46 72 72 98 49 56 67 46 72 72 98 45 57 67 46 72 93 46 46							
39 68 73 44 78 100 45 47 74 75 58 88 93 57 48 71 73 41 82 98 62 49 71 73 41 82 98 62 50 71 73 41 82 98 62 51 64 53 53 66 95 51 52 64 53 53 66 95 51 53 63 47 60 62 99 48 56 65 74 60 58 98 49 56 65 74 60 58 91 54 56 67 46 72 72 98 49 56 67 46 72 72 98 49 56 67 46 72 72 98 45 57 67 46 72 93 46 46							
47 74 75 58 88 93 97 48 71 73 41 82 98 62 50 71 73 41 82 98 62 50 71 73 41 82 98 62 51 64 63 53 66 95 51 52 64 53 63 66 95 51 53 64 53 63 66 95 51 54 63 47 60 62 99 48 56 65 74 60 58 98 49 56 65 74 60 58 98 49 57 67 46 72 72 98 49 58 67 48 72 72 99 48 61 66 52 62 75 95 45 62 61 51 47 70 94 44		68	73	44			
48 71 73 41 82 98 62 49 71 73 41 82 98 62 50 71 73 41 82 98 62 51 64 53 53 66 95 51 52 64 53 53 66 95 51 54 63 47 60 62 99 48 55 63 47 60 62 99 48 56 65 74 60 58 98 37 57 67 46 72 72 98 49 59 62 39 69 55 91 54 60 69 63 63 72 92 45 61 65 52 62 75 95 45 62 61 53 20 72 45 87 43 62 63 22 73 59 95 42 </td <td>41</td> <td>69</td> <td>71</td> <td>43</td> <td>88</td> <td>100</td> <td>45</td>	41	69	71	43	88	100	45
49 71 73 41 82 98 62 50 71 73 41 82 98 62 51 64 53 53 66 95 51 52 64 53 53 66 95 51 53 63 47 60 62 99 48 56 63 47 60 62 99 48 56 66 74 60 58 98 49 57 67 46 72 72 98 49 58 62 39 69 55 91 54 60 60 63 63 72 99 48 61 66 52 62 75 91 44 63 61 53 20 72 45 87 43 66 66 69 40 64 92 45 67 58 22 73 59 95 42 </td <td>47</td> <td>74</td> <td>75</td> <td>58</td> <td>88</td> <td>93</td> <td>57</td>	47	74	75	58	88	93	57
50 71 73 41 82 88 62 51 84 53 53 66 95 51 52 64 53 53 66 95 51 53 64 53 53 66 95 51 54 63 47 60 62 99 48 56 63 47 60 62 99 48 56 65 74 60 53 98 49 57 67 46 72 72 98 49 58 67 46 72 72 99 48 60 69 63 63 72 99 48 61 66 52 62 75 95 45 62 61 51 47 70 91 44 66 66 69 40 84 92 45 67 58 22 73 59 95 42	48	71	73	41	82	98	62
51 64 53 53 66 95 51 52 64 53 53 66 95 51 53 63 47 60 62 99 48 56 63 47 60 62 99 48 56 65 74 60 62 99 48 56 65 74 60 58 98 49 57 67 46 72 72 98 49 58 67 46 72 72 99 48 60 62 39 69 55 91 54 61 66 52 62 75 95 45 62 61 38 84 40 68 74 63 61 69 40 84 69 42 64 53 20 72 45 87 43 65 53 22 73 59 95 42	49	71	73	41	82	98	62
52 64 53 53 66 95 51 53 64 53 53 66 95 51 54 63 47 60 62 99 48 55 63 47 60 62 99 48 56 65 74 60 58 98 49 57 67 46 72 72 98 49 59 62 39 69 55 91 54 60 69 63 63 72 99 48 61 66 52 62 75 95 45 62 61 38 84 40 68 74 63 61 51 47 43 44 40 68 74 62 61 38 84 40 68 74 43 66 66 69 40 84 92 45 67 58 22 73 59 </td <td>50</td> <td>71</td> <td>73</td> <td>41</td> <td>82</td> <td>98</td> <td>62</td>	50	71	73	41	82	98	62
53 64 53 53 66 95 51 54 63 47 60 62 99 48 56 65 74 60 62 99 48 56 65 74 60 58 98 37 57 67 46 72 72 98 49 58 67 46 72 72 98 49 59 62 39 69 55 91 54 60 69 63 63 72 95 45 61 66 52 62 75 95 45 62 61 38 84 40 68 74 63 61 51 47 70 91 44 65 53 20 72 45 87 43 66 69 40 84 92 44 65 63 22 73 59 95 42 68 68 22 73 59 95 42 68 68 22 73 59 94 49 77 69 74 52 70 98 49 78 68 36 68 55 94 39 77 69 74 52 70 98 49 83 61 58 48 69 91 41 83 61 58 48	51	64	53	53	66	95	51
54 63 47 60 62 99 48 55 63 47 60 62 99 48 56 65 74 60 62 99 48 57 67 46 72 72 98 49 58 67 46 72 72 98 49 59 62 39 69 55 91 54 60 69 63 62 75 95 45 61 66 52 62 75 95 45 62 61 38 84 40 66 74 63 61 51 47 43 43 43 66 66 69 40 84 62 45 42 67 58 22 73 59 95 42 74 74 81 59 70 98 49 76 60 72 42 71 97 37 </td <td>52</td> <td>64</td> <td>53</td> <td>53</td> <td>66</td> <td>95</td> <td>51</td>	52	64	53	53	66	95	51
55 63 47 60 62 99 48 56 65 74 60 58 99 47 57 67 46 72 72 98 49 58 67 46 72 72 98 49 59 62 39 69 55 91 54 60 69 63 63 72 99 48 61 66 52 62 75 95 45 62 61 38 84 40 66 74 63 61 51 47 70 91 44 65 53 20 72 45 87 43 66 66 69 40 84 92 45 67 58 22 73 59 95 42 68 58 22 73 59 95 42 68 58 22 73 59 95 42 76 60 72 42 51 97 37 76 60 72 42 51 94 39 81 61 58 48 69 91 41 83 61 58 48 69 91 41 84 69 91 41 41 83 61 58 48 69 91 41 84 69 91 41 41	53	64	53	53	66	95	51
56 65 74 60 58 98 37 57 67 46 72 72 98 49 58 67 46 72 72 98 49 59 62 39 69 55 91 54 60 69 63 63 72 99 48 61 66 52 62 75 95 45 62 61 38 84 40 68 74 63 61 51 47 70 91 44 65 53 20 72 45 87 43 66 66 69 40 84 92 45 42 67 58 22 73 59 95 42 68 58 22 73 59 93 57 76 69 74 52 70 98 49 77 69 74 52 70 98 91 </td <td></td> <td>63</td> <td></td> <td></td> <td></td> <td></td> <td></td>		63					
57 67 46 72 72 98 49 58 67 46 72 72 98 49 59 62 39 69 55 91 54 60 69 63 63 72 99 48 61 66 52 62 75 95 45 62 61 53 20 72 45 87 43 66 66 69 47 70 91 44 66 53 20 72 45 87 43 66 66 69 94 43 43 44 66 53 22 73 59 95 42 68 58 22 73 59 95 42 68 58 22 73 59 95 42 76 60 72 42 51 97 37 77 69 74 52 70 98 49 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
58 67 46 72 72 98 49 59 62 39 69 55 91 54 60 69 63 62 75 95 48 61 66 52 62 75 95 45 62 61 38 84 40 68 74 63 61 51 47 70 91 44 65 53 20 72 45 67 43 66 66 69 40 84 92 45 67 58 22 73 59 95 42 68 58 22 73 59 95 42 76 60 72 42 51 97 37 76 60 72 42 51 97 37 77 69 74 52 70 98 49 78 58 36 68 69 91 41							
59 62 39 69 55 91 54 60 69 63 63 72 99 48 61 66 52 62 75 95 45 62 61 38 84 40 68 74 63 61 51 47 70 91 44 65 53 20 72 45 87 43 66 66 69 40 84 92 45 67 58 22 73 59 95 42 68 58 22 73 59 95 42 68 58 22 73 59 93 57 76 60 72 42 51 97 37 77 69 74 52 70 98 49 81 61 58 48 69 91 41 82 61 58 48 69 91 41							
6069636372994861665262759545626138844068746361514770914465532072456743666669408492456758227359954268582273599542747481597893577660724251973777697452709849785836686991418261584869914184615848699141170804863936326177115690353547711569035454771156903556574386398544069714388100454474755888935744747558889357							
616652627595456261388440687463615147709144655320724587436666694084924567582273599542747481597893577660724251973777697452709849785836685594398161584869914182615848699141836158486991418461584869914184615848699141846158486991418461584869914184615848699141846158486991418461771156903555465744388100454474755888935744747558889357							
626138844068746361514770914465532072458743666940849245675822735995426858227359954274748159789357766072425197377769745270984978583668559439816158486991418261584869914183615848699141846158486991418461584869936326177115690354547711569035454771156903545471438810045406971438893574474755888889357							
6361514770914465532072458743666669408492456758227359954268582273599542747481597893577660724251973777697452709849785836685594398161584869914183615848699141846158486991418461584869914170804863936326178295397453547711569035454771156903545477115690354069714388100454274755888935744747558889357							
655320724587436666694084924567582273599542685822735995427474815978935776607242519737776974527098497858366855943981615848699141826158486991418361584869914117080486393632617711569035354771156903556574386398544069714388100454374755886935744747558869357							
666669408492456758227359954268582273599542747481597893577660724251973777697452709849785836685594398161584869914183615848699141846158486991411708048639363261771156903545477115690354069714388100454274755888935744747558888357							
67 58 22 73 59 95 42 68 58 22 73 59 95 42 74 74 81 59 78 93 57 76 60 72 42 51 97 37 77 69 74 52 70 98 49 78 58 36 68 55 94 39 81 61 58 48 69 91 41 82 61 58 48 69 91 41 84 61 58 48 69 91 41 1 70 80 48 63 93 63 2 61 78 29 53 97 45 3 54 77 11 56 90 35 5 65 74 38 63 98 54 40 69 71 43 88 93 57 44 74 75 58 88 93 57							
68582273599542747481597893577660724251973777697452709849785836685594398161584869914182615848699141836158486991418461584869914117080486393632617829539745354771156903556574386398544069714388100454274755888935743747558889357							
747481597893577660724251973777697452709849785836685594398161584869914182615848699141836158486991418461584869914117080486393632617829539745354771156903545477115690355657438639854406971438810045427475588893574374755888935744747558889357							
76 60 72 42 51 97 37 77 69 74 52 70 98 49 78 58 36 68 55 94 39 81 61 58 48 69 91 41 82 61 58 48 69 91 41 83 61 58 48 69 91 41 84 61 58 48 69 91 41 1 70 80 48 63 93 63 2 61 78 29 53 97 45 3 54 77 11 56 90 35 4 54 77 11 56 90 35 4 54 77 11 56 90 35 4 65 74 38 63 98 54 40 69 71 43 88 93 57 43 74 75 58 88 93 57 44 74 75 58 88 93 57							
77 69 74 52 70 98 49 78 58 36 68 55 94 39 81 61 58 48 69 91 41 82 61 58 48 69 91 41 83 61 58 48 69 91 41 84 61 58 48 69 91 41 1 70 80 48 63 93 63 2 61 78 29 53 97 45 3 54 77 11 56 90 35 4 54 77 11 56 90 35 5 65 74 38 63 98 54 40 69 71 43 88 100 45 42 74 75 58 88 93 57 44 74 75 58 88 93 57							
7858366855943981615848699141826158486991418361584869914184615848699141170804863936326178295397453547711569035454771156903556574386398544069714388100454274755888935744747558889357							
81 61 58 48 69 91 41 82 61 58 48 69 91 41 83 61 58 48 69 91 41 84 61 58 48 69 91 41 1 70 80 48 63 93 63 2 61 78 29 53 97 45 3 54 77 11 56 90 35 4 54 77 11 56 90 35 5 65 74 38 63 98 54 40 69 71 43 88 100 45 42 74 75 58 88 93 57 44 74 75 58 88 93 57							
82 61 58 48 69 91 41 83 61 58 48 69 91 41 84 61 58 48 69 91 41 1 70 80 48 63 93 63 2 61 78 29 53 97 45 3 54 77 11 56 90 35 4 54 77 11 56 90 35 5 65 74 38 63 98 54 40 69 71 43 88 100 45 42 74 75 58 88 93 57 43 74 75 58 88 93 57 44 74 75 58 88 93 57							
83 61 58 48 69 91 41 84 61 58 48 69 91 41 1 70 80 48 63 93 63 2 61 78 29 53 97 45 3 54 77 11 56 90 35 4 54 77 11 56 90 35 5 65 74 38 63 98 54 40 69 71 43 88 100 45 42 74 75 58 88 93 57 43 74 75 58 88 93 57 44 74 75 58 88 93 57							
8461584869914117080486393632617829539745354771156903545477115690355657438639854406971438810045427475588893574374755888935744747558889357							
17080486393632617829539745354771156903545477115690355657438639854406971438810045427475588893574374755888935744747558889357							
2617829539745354771156903545477115690355657438639854406971438810045427475588893574374755888935744747558889357							
3 54 77 11 56 90 35 4 54 77 11 56 90 35 5 65 74 38 63 98 54 40 69 71 43 88 100 45 42 74 75 58 88 93 57 43 74 75 58 88 93 57 44 74 75 58 88 93 57							
45477115690355657438639854406971438810045427475588893574374755888935744747558889357							
5657438639854406971438810045427475588893574374755888935744747558889357							
406971438810045427475588893574374755888935744747558889357							
427475588893574374755888935744747558889357							
4374755888935744747558889357							
44 74 75 58 88 93 57							

MAJOR HUC-8	H_I_FV	H_M_FV_MM	H_M_FV_RFC	H_M_FV_MDX Flow Variability,	H_M_FV_TX Flow Variability,	H_M_FV_FDP Flow Variability,
	Flow Variability,	Flow Variability,	Flow Variability,	Magnitude and Duration of	Timing of Annual	Frequency and Duration
	Combined Index	Monthly Magnitude	Rate and Frequency of Change	Annual Extremes	Extremes	of High/Low Pulses
69	58	22	73	59	95	42
70	55	25	63	45	98	44
71	57	40	67	55	91	31
72	74	84	70	76	96	44
73	74	81	59	78	93	57
75	69	74	52	70	98	49
79	58	36	68	55	94	39
80	57	40	67	55	91	31

Measurement Selection Guide

The following table is provided to assist project owners, regulators and practitioners in selecting the appropriate parameters and metrics for each stream restoration project reach. All parameters and metrics would rarely, if ever, be used for a single project. The scenarios below show when each parameter could be used. Note, if a metric is selected, it must be assessed for the existing **and** proposed condition.

Functional Category	Function-Based Parameters	Metric	Scenarios
		Land Use Coefficient	Required for all assessments, except when BMP MIDS is used.
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient	Optional. Use where BMPs are proposed on adjacent drainage.
		Concentrated Flow Points / 1,000 feet	Required for all assessments, except when BMP MIDS is used.
		Bank Height Ratio	Required for all assessments.
Hydraulics	Floodplain Connectivity		Required for all assessments. Not applicable in stream/wetland complexes with
		Entrenchment Ratio	DA stream types.
	Large Woody Debris	LWD Index	Required to use either LWDI or No. of LWD Pieces, but not both.
	Large woody Debits	No. of LWD Pieces / 100 meters	Required to use either LWDI or No. of LWD Pieces, but not both.
		Dominant BEHI/NBS	Required for all assessments.
	Lateral Migration	Percent Streambank Erosion (%)	Required for all assessments.
	°	Percent Armoring (%)	Only use when armoring techniques are present or proposed. If armoring is
			proposed, use instead of BEHI/NBS for proposed condition score.
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	Optional. Contact coordinating agency before including this parameter.
			Required for all assessments. Not applicable to stream/wetland complexes with
		Pool Spacing Ratio	DA stream types.
			Required for all assessments. Not applicable to stream/wetland complexes with
Geomorphology		Pool Depth Ratio	DA stream types.
	Bed Form Diversity		Required for all assessments. Not applicable to stream/wetland complexes with
		Percent Riffle (%)	DA stream types.
			Optional. Recommended for meandering single-thread stream types where the
		Aggradation Ratio	riffles are exhibiting signs of aggradation. Not applicable to stream/wetland
			complexes with DA stream types.
		Effective Vegetated Riparian Area (%)	Required for all assessments.
		Canopy Cover (%)	Required for all assessments.

Site Information and				
Reference Selection				
Project Name:	Black Earth Creek			
Reach ID:	1			
Restoration Potential:	0			
Existing Stream Type:	С			
Reference Stream Type:	С			
Woody Vegetation Natural Component:	Yes			
Use Class:	2A			
River Nutrient Regions:	Central			
Drainage Area (sq.mi.):	101			
Proposed Bed Material:	Gravel			
Existing Stream Length (ft):	703			
Proposed Stream Length (ft):	703			
Macroinvertebrate IBI Class:	Northern Coldwater			
Fish IBI Class:	Southern Streams			
Valley Type:	Unconfined Alluvial			
Flow Permanence:	Perennial			
Strahler Stream Order:	Fourth			

Notes

1. Users input values that are highlighted based on restoration potential

2. Users select values from a pull-down menu

3. Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY

	••••••
Existing Condition Score (ECS)	0.42
Proposed Condition Score (PCS)	0.49
Change in Functional Condition (PCS - EC	0.07
Existing Stream Length (ft)	703
Proposed Stream Length (ft)	703
Change in Stream Length (ft)	0
Existing Functional Feet (FF)	295
Proposed Functional Feet (FF)	344
Proposed FF - Existing FF	49
Percent Change in FF (%)	17%
FF Yield (FF/ft)	0.07

MITIC	GATION SUN	1MARY
49	(FF)	Lift

FUNCTION BASED PARAMETERS SUMMARY					
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter		
Hydrology	Reach Runoff	0.68	0.87		
Hydraulics	Floodplain Connectivity	0.75	0.75		
	Large Woody Debris	0.45	0.79		
	Lateral Migration	1.00	1.00		
Geomorphology	Bed Material Characterization				
	Bed Form Diversity	0.92	0.92		
	Riparian Vegetation	0.35	0.66		
	Temperature				
Physicochemical	Dissolved Oxygen				
	Total Suspended Solids				
Biology	Macroinvertebrates				
вююду	Fish				

FUNCTIONAL CATEGORY REPORT CARD					
Functional Category	ECS	PCS	Functional Change		
Hydrology	0.68	0.87	0.19		
Hydraulics	0.75	0.75	0.00		
Geomorphology	0.68	0.84	0.16		
Physicochemical					
Biology					

	EXISTING CONDI	TION ASSESSMENT			Roll Up Scoring		oring
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category
Hydrology	Reach Runoff	Land Use Coefficient BMP MIDS Rv Coefficient Concentrated Flow Points / 1,000 feet	64 1.25	0.74	0.68	0.68	Functioning At Risk
Hydraulics	Floodplain Connectivity	Bank Height Ratio Entrenchment Ratio	1.25 1.3 4.3	0.57 0.92	0.75	0.75	Functioning
	Large Woody Debris	LWD Index No. of LWD Pieces / 100 meters	284	0.45	0.45		
	Lateral Migration	Dominant BEHI/NBS Percent Streambank Erosion (%) Percent Armoring (%)	L/H 1.7	1.00 1.00	1.00	0	
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Geomorphology	Bed Form Diversity	Pool Spacing Ratio Pool Depth Ratio Percent Riffle (%) Aggradation Ratio	5.1 2.2 59	1.00 0.76 1.00	0.92 0.68	Functioning At Risk	
	Riparian Vegetation	Effective Vegetated Riparian Area (%) Canopy Cover (%) Herbaceous Strata Vegetation Cover (%) Woody Stem Basal Area (sqm/hectare)	7 17 95 11	0.00 0.00 1.00 0.40			
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Biology	Macroinvertebrates	Macroinvertebrate IBI					
Diology	Fish	Fish IBI					

	PROPOSED COND	ITION ASSESSMENT			R	oll Up Sco	ring
Functional Category	Function-Based Parameter	Metric	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient	64	0.74			
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient			0.87	0.87	Functioning
		Concentrated Flow Points / 1,000 feet	0	1.00			
Hydraulics	Floodplain Connectivity	Bank Height Ratio	1.3	0.57	0.75	0.75	Functioning
Trydraulies	rioodplain connectivity	Entrenchment Ratio	4.3	0.92	0.75	0.75	Functioning
	Large Woody Debris	LWD Index	500	0.79	0.79		
	Large woody Debits	No. of LWD Pieces / 100 meters			0.75		
		Dominant BEHI/NBS	L/H	1.00			
	Lateral Migration	Percent Streambank Erosion (%)	1.7	1.00	1.00		
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)				0.84	
Geomorphology		Pool Spacing Ratio	5.1	1.00			Functioning
Geomorphology	Bed Form Diversity	Pool Depth Ratio	2.2	0.76	0.92		Functioning
	Bed Form Diversity	Percent Riffle (%)	59	1.00	0.92		
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)	45	0.21			
	Dinarian Vagatatian	Canopy Cover (%)	75	0.83	0.66		
	Riparian Vegetation	Herbaceous Strata Vegetation Cover (%)	80	1.00	0.66		
		Woody Stem Basal Area (sqm/hectare)	12	0.60			
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Biology	Macroinvertebrates	Macroinvertebrate IBI					
ынову	Fish	Fish IBI					

		As-Built			F	Roll Up Scoring	5
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
Tryuraulies	riodupiani connectivity	Entrenchment Ratio					
	Large Woody Debris	LWD Index					
	Large woody Debris	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Geomorphology		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	bed form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
	Riparian Vogatation	Canopy Cover (%)					
	Riparian Vegetation	Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Biology	Macroinvertebrates	Macroinvertebrate IBI	65	1.00	1.00	1.00	Functioning
Biology	Fish	Fish IBI				1.00	runctioning

Monitoring Year	1	Date			F	Roll Up Scoring	3
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
Tryuradiles		Entrenchment Ratio					
	Large Woody Debris	LWD Index					
		No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Geomorphology		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
	Riparian Vegetation	Canopy Cover (%)					
		Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Biology	Macroinvertebrates	Macroinvertebrate IBI					
BIOIOGY	Fish	Fish IBI					

Monitoring Year	2	Date			F	Roll Up Scorin	g
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
Hydradiles	Floodplain connectivity	Entrenchment Ratio					
	Large Woody Debris	LWD Index					
	Large woody Debris	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Gaamarahalagu		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
	Riparian Vagatation	Canopy Cover (%)					
	Riparian Vegetation	Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Riology	Macroinvertebrates	Macroinvertebrate IBI					
Biology	Fish	Fish IBI					

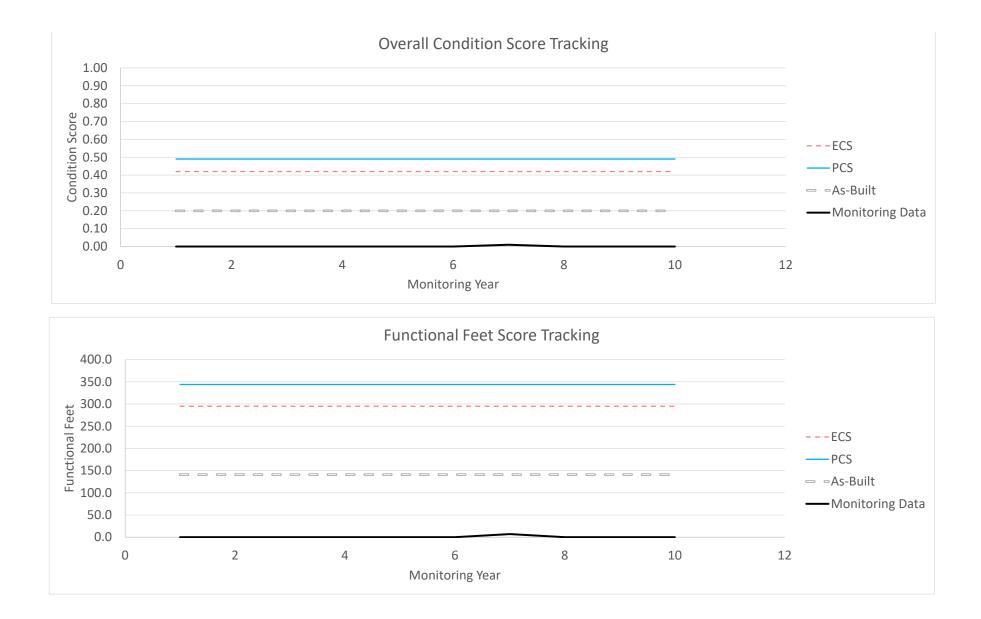
Monitoring Year	3	Date			F	Roll Up Scoring	5
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
Tryuraulics	ribouplain connectivity	Entrenchment Ratio					
	Large Woody Debris	LWD Index					
	Large Woody Debris	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Geomorphology		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
	Riparian Vagatation	Canopy Cover (%)					
	Riparian Vegetation	Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Biology	Macroinvertebrates	Macroinvertebrate IBI					
Biology	Fish	Fish IBI					

Monitoring Year	4	Date			F	Roll Up Scoring	3
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
Tryuraulies		Entrenchment Ratio					
	Large Woody Debris	LWD Index					
	Large Woody Debits	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Geomorphology		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
	Riparian Vegetation	Canopy Cover (%)					
		Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Biology	Macroinvertebrates	Macroinvertebrate IBI					
BIOIOgy	Fish	Fish IBI					

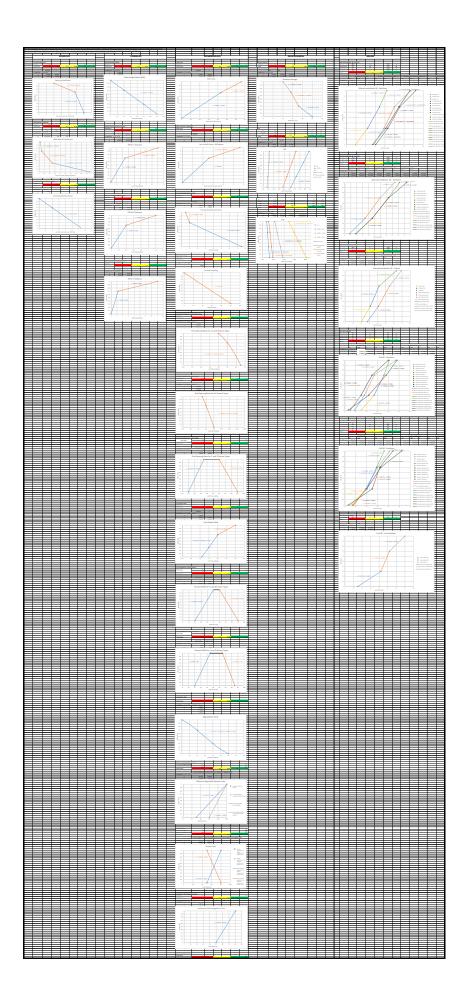
Monitoring Year	5	Date			F	Roll Up Scoring	5
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
nyuraulics	Floouplain connectivity	Entrenchment Ratio					
	Large Weady Debris	LWD Index					
	Large Woody Debris	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Coomorphology		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
	Riparian Vagatation	Canopy Cover (%)					
	Riparian Vegetation	Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Piology	Macroinvertebrates	Macroinvertebrate IBI					
Biology	Fish	Fish IBI					

Monitoring Year	6	Date			F	Roll Up Scoring	3
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
Tryuraulies		Entrenchment Ratio					
	Large Woody Debris	LWD Index					
	Large Woody Debris	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Coomorphology		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
	Riparian Vegetation	Canopy Cover (%)					
		Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Piology	Macroinvertebrates	Macroinvertebrate IBI					
Biology	Fish	Fish IBI					

Monitoring Year	7	Date			F	Roll Up Scorir	g
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
Hydraulics	Floodplain connectivity	Entrenchment Ratio					
	Large Woody Debris	LWD Index					
	Large Woody Debris	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Geomorphology		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
	Riparian Vegetation	Canopy Cover (%)					
		Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)	5.5	0.07	0.07	0.04	Not Functioning
	Total Suspended Solids	TSS (mg/L)	27	0.00	0.00		
Biology	Macroinvertebrates	Macroinvertebrate IBI					
blology	Fish	Fish IBI					


Monitoring Year	8	Date			F	Roll Up Scoring	3
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
Tryuradiles		Entrenchment Ratio					
	Large Woody Debris	LWD Index					
	Large Woody Debits	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Geomorphology		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
	Riparian Vegetation	Canopy Cover (%)					
		Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Biology	Macroinvertebrates	Macroinvertebrate IBI					
BIOIOGY	Fish	Fish IBI					

Monitoring Year	9	Date			F	Roll Up Scorin	g
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
nyuraulics		Entrenchment Ratio					
	Large Woody Debris	LWD Index					
	Large Woody Debits	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Coomernhology		Pool Spacing Ratio					
Geomorphology	Bed Form Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)					
		Canopy Cover (%)					
	Riparian Vegetation	Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Pielem	Macroinvertebrates	Macroinvertebrate IBI					
Biology	Fish	Fish IBI					


Monitoring Year	10	Date			F	Roll Up Scorin	g
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category
		Land Use Coefficient					
Hydrology	Reach Runoff	BMP MIDS Rv Coefficient					
		Concentrated Flow Points / 1,000 feet					
Hydraulics	Floodplain Connectivity	Bank Height Ratio					
Tryuradiles		Entrenchment Ratio					
	Large Woody Debris	LWD Index					
	Large Woody Debris	No. of LWD Pieces / 100 meters					
		Dominant BEHI/NBS					
	Lateral Migration	Percent Streambank Erosion (%)					
		Percent Armoring (%)					
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)					
Coorden and a loss		Pool Spacing Ratio					
Geomorphology	Ded Ferre Diversity	Pool Depth Ratio					
	Bed Form Diversity	Percent Riffle (%)					
		Aggradation Ratio					
		Effective Vegetated Riparian Area (%)				1	
		Canopy Cover (%)					
	Riparian Vegetation	Herbaceous Strata Vegetation Cover (%)					
		Woody Stem Basal Area (sqm/hectare)					
	Temperature	Summer Average (°C)					
Physicochemical	Dissolved Oxygen	DO (mg/L)					
	Total Suspended Solids	TSS (mg/L)					
Dialogy	Macroinvertebrates	Macroinvertebrate IBI					
Biology	Fish	Fish IBI					

			FUNC	TION BAS	ED PARA	METERS	SUMMA	RY						
Functional	Functional Existing Proposed As-Built Monitoring Year													
Category	Function-Based Parameters	Parameter	Parameter	AS-Built	1	2	3	4	5	6	7	8	9	10
Hydrology	Reach Runoff	0.68	0.87											
Hydraulics	Floodplain Connectivity	0.75	0.75											
	Large Woody Debris	0.45	0.79											
	Lateral Migration	1.00	1.00											
Geomorphology	Bed Material Characterization													
	Bed Form Diversity	0.92	0.92											
	Riparian Vegetation	0.35	0.66											
	Temperature													
Physicochemical	Dissolved Oxygen										0.07			
	Total Suspended Solids										0.00			
Biology	Macroinvertebrates			1.00										
Biology	Fish													

		FUI	NCTIONAL	CATEGO	ORY REPO	RT CARD							
Functional Category	FCS	ECS PCS As-Built Monitoring Year											
Functional Category	ECS	PCS	AS-DUIIL	1	2	3	4	5	6	7	8	9	10
Hydrology	0.68	0.87											
Hydraulics	0.75	0.75											
Geomorphology	0.68	0.84											
Physicochemical										0.04			
Biology			1.00										
Overall Score	0.42	0.49	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
Functional Feet	295.0	344.0	141.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	0.0

Project: Reach ID:

Function-Base	ed Parameter	Metric(s)	Datasheets for Field-based Metrics
Reach Runoff*		Land Use Coefficient (D) AND Concentrated Flow Points (F)	Project Reach Form Section II(B)** AND Reach Runoff Form**
		BMP MIDS Rv Coefficient (D)	
□ Floodplain Con	nectivity*	Bank Height Ratio* AND Entrenchment Ratio* (F)	Rapid Survey Form** OR Cross Section AND Longitudinal Survey Forms
		LWD Index (F)	LWDI Form
□ Large Woody D	Debris (LWD)	or	
		□ No. of LWD Pieces/ 100 meters (F)	Project Reach Form Section VI**
Lateral Migrati	on*	Dominant BEHI/NBS* AND Percent Streambank Erosion* (F)	Lateral Migration Form**
		or Optional: Percent Armoring (F)	Project Reach Form Section II(C)**
📙 Bed Material C	haracterization	□ Optional: Size Class Pebble Count Analyzer (F)	Pebble Count Form
<u> </u>			
Bed Form Dive	***	Pool Spacing Ratio* AND Pool Depth Ratio* AND Percent Riffle* (F)	Longitudinal Survey OR Rapid Survey Form**
Bed Form Dive	rsity	Optional: Aggradation Ratio (F)	Cross Section Form OR Rapid Survey Form**
		· · · · · · · · · · · · · · · · · · ·	
		Effective Vegetated Riparian Area* (D/F) AND Canopy	Effective Vegetated Riparian Area
Riparian Veget	ation*	Cover* (F) AND Herbaceous Vegetation Cover* (F) AND Woody Stem Basal Area ¹ (F)	Documentation Form AND Riparian Width, Area, and Vegetation Forms**
□ Temperature		□ Optional: Summer Average (F)	Temperature Logger SOP Form
			· · · · · · · · · · · · · · · · · · ·
□ Dissolved Oxyg	gen	Optional: Dissolved Oxygen Concentration (F)	Sensor Log
□ Total Suspende	ed Solids	□ <i>Optional:</i> Total Suspended Solids Concentration (F)	Sensor Log
□ Macroinverteb	rates	Optional: Macroinvertebrate IBI (F)	Macroinvertebrate Sample Sorting Bench Sheet AND Stream Invertebrate Visit Form
□ Fish		Optional: Fish IBI (F)	Fish Survey Record Form AND Visit Summary Form

* Include in all assessments. If % armoring is >75%, other lateral migration measurements are not recommended and the parameter score is a 0. ** Field/Desktop values can be entered directly from field forms into MNSQT; all other metrics require additional post-processing or analysis to

calculate values.

(D) indicates metrics are calculated using desktop methods

(F) indicates metrics are calculated or verified using field methods

¹ Include Woody Stem Basal Area only if woody vegetation is determined to be a signification natural component of the riparian zone.

Date:

Investigators:

١.		Site	Information	1			
	Project Name:	Black Earth Cr	eek at Walkin				
	Reach ID:						
	Drainage Area (sq. mi.):		101				
	Use Class:				Shadi	ng Key	
	River Nutrient Region:					p Value	
	Valley Type:					Value	
	Stream Reach length (ft):		703		Calcu	llation	
	Latitude:						
	Longitude:						
п.		R	each Walk				
	Difference between bankfull (BKF) st	age and					
A.	water surface (WS) (ft)						
	Difference between BKF stage and W Average or consensus value from rec	. ,			<u>.</u>	· .	
Р	Number Concentrated Flow Points						
В.	Concentrated Flow Points/ 1,000 L.F		0.0				
	Length of Arm	oring on banks	s (ft)				
C.	Total (ft)	0.0					
	Percent Armoring (%)	0%					
	Note: If %armoring is >75%, it is reco	ommended to r	not measure o	ther later	al migrat	ion metrics.	
	Valley length (ft)						
D.	Stream Length (ft)						
	Sinuosity						
	Iden	tification of F	Representati	ve Sub-R	leach		
	Representative Sub-Reach Length At least 20 x the Bankfull Width				20*	Bankfull Width	916.0
	Latitude of downstream extent:]			•••••••••••••••••••••••••••••••••••••••

Sub-Reach Survey Method

□ Longitudinal Profile & Cross Section

Longitude of downstream extent:

Rapid Survey

Date:

Investigators:

Minnesota Stream Quantification Tool Project Reach Form

IV.

Bankfull Verification and Representative Riffle Cross Section

Is Cross Section located within Representative Sub-Reach?

□ Yes □ No

If no, explain why:

A.	Bankfull Width (ft)	45.8					
В.	Bankfull Mean Depth (ft) = Average of cross-section depths	3.5					
C.	Bankfull Area (sq. ft.) Width * Mean Depth						
D.	Regional Curve Bankfull Width (ft)						
E.	Regional Curve Bankfull Mean Depth (ft)						
F.	Regional Curve Bankfull Area (sq. ft.)	247.7					
G.	Curve Used						

Cross Section Measurements									
Depti	measure		ankiuli						
Station	Depth	Station	Depth						
0	0	26	3.5						
1.6	1.6 1.9		3.3						
2.3	3.2	35	3.8						
8	3.8	38	3.9						
13	4	43	4						
18	3.8	45	1.9						
22	3.7	45.8	0						

NOTE: Space is provided here to survey a cross section using rapid survey methods. A cross section form is also available for cross section surveys.

V.	Stream Cla	assificati	on
Α.	Width Depth Ratio (ft/ft) Bankfull Width / Bankfull Mean Depth	13.0	
В.	Bankfull Max Riffle Depth	4	
C.	Floodprone Area Width (ft)		
D.	Entrenchment Ratio (ft/ft)	0.0	
	Floodprone Area Width /Bankfull Width		
E.	Slope Estimate (%)		Average slope from the representative sub- reach will be measured and calculated.
F.	Channel Material Estimate		Pebble count forms are available to aid in this determination.
G.	Stream Type		

.

VI.

Large Woody Debris (100m (328 ft) assessment length within Sub-Reach)

		NOTE: Complete this section only if the LWDI
Α.	Number of Pieces	is not being used. Otherwise complete the
		LWDI Field Form.

VII.

Representative Sub-Reach Sketch

Notes

Project Name:

See Table 9 of the User Manual for Land Use Descriptions and Land Use Coefficients

Land Use Description	(A) Land Use Coefficient	(B) Drainage Area (acres)	(A) * (B)
			0
			0
			0
			0
			0
	Sum:	0	0
		Weighted Land Use:	

Shading Key							
Desktop Value							
Calculation							

Date:

Investigators:

Reach ID:

Riffle Data (Floodplain Connectivity & Bed Form Diversity)

١.	I. Riffle Data (Floodplain Connectivity & Bed Form Diversity)										
A.	Representative Sub-Reach Length	703		20*Bankfull Width	916.0						

B. Bank Height & Riffle Data: Record for each riffle in the Sub-Reach

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station	0	275	357	420	556	703		
End Station	208	308	378	506	624			
Low Bank Height (ft)	5.4	5.9	5.9	5.3	5.3			
BKF Max Depth (ft)	4	4.5	4.5	4.2	4.2			
BKF Mean Depth (ft)								
BKF Width (ft)	45.8	41.2	41.2	44.7	44.7			
Flood Prone Width (ft)	250	155	155	130	130			
Riffle Length (ft) Including Run	208	33	21	86	68			
Bank Height Ratio (BHR) Low Bank H / BKF Max D	1.4	1.3	1.3	1.3	1.3			
BHR * Riffle Length (ft)	280.8	43.3	27.5	108.5	85.8			
Entrenchment Ratio (ER)	5.5	3.8	3.8	2.9	2.9			
ER * Riffle Length (ft)	1135.4	124.2	79.0	250.1	197.8			
WDR BKF Width/BKF Mean Depth								

C.	Total Riffle Length (ft) Excludes Additional Pool Lengths	416.0
D.	Weighted BHR	
	$\frac{\Sigma(Bank \ Height \ Ratio_i \times \text{Riffle Length}_i)}{\Sigma Riffle \ Length}$	1.3
E.	Weighted ER	4.3
F.	Maximum WDR	
G.	Percent Riffle (%)	59%

Shading Key
Field Value
Calculation

Date:

Investigators:

Ш.

Pool Data (Bed Form Diversity)

A. Pool Data: Record for each pool within the Sub-Reach

	P1	P2	P3	Ρ4	P5	P6	P7	P8
Geomorphic Pool?	G		G		G			
Station	225	322	385	536	689			
P-P Spacing (ft)			160.0		304.0			
Pool Spacing Ratio Pool Spacing/BKF Width			3.5		6.6			
Pool Depth (ft) Measured from BKF	11.3	7.6	8	7.6	4.7			
Pool Depth Ratio Pool Depth/BKF Mean Depth	3.2	2.2	2.3	2.2	1.3			

B. Average Pool Depth Ratio	2.2
-----------------------------	-----

С.

	Median Pool Spacing Ratio	
--	---------------------------	--

5.1

III.			Slope			
		Begin	End	Difference	Slope (ft/ft)	
	Station along tape (ft)	0	1300	1300.0	0.002	
	Stadia Rod Reading (ft)	754	752	2.0		-

IV.

Notes

Minnesota Stream Quantification Tool Cross Section Form

Date:	Rod Team:	
Stream Name:	Instrument Team:	
Reach I.D.	Notes Team:	
Team Number:		

Key Codes:

Head of Riffle	R	Bankfull	BKF	Benchmark	TBM
Head of Run	Ν	Top of Bank	ТОВ	Turning Point	ТР
Head of Pool	Р	Edge of Channel	EC	Backsight	BS
Head of Glide	G	Inner Berm	IB	Foresight	FS
Thalweg	TW			Height of Instrument	HI

Cross Section Field Form

Station	BS (+)	н	FS (-)	Elevation	Notes
		_			
		+			
	1	1	1		

Minnesota Stream Quantification Tool Longitudinal Profile Form

Date:			Rod Tea	Rod Team:					
Stream Name:			Instrum	ent Team:					
Reach I.D.				eam:					
Team Number:									
Longitudinal Profil	e Field Forn	n							
Key Codes:									
Head of Riffle	R	Bankfull	BKF	Benchmark	TBM				
Head of Run	Ν	Top of Bank	TOB	Turning Point	ТР				
Head of Pool	Р	Edge of Channel	EC	Backsight	BS				
Head of Glide	G	Inner Berm	IB	Foresight	FS				
Thalweg	TW			Height of Instrument	HI				

Survey:		Т	halweg	Water	^r Surface	Ba		Top of	Low Bank		
BS (+)	н			FS (-)	Elevation	FS (-)	Elevation	FS (-)	Elevation	FS (-)	Elevation
	BS (+) BS (-) BS (-)	BS (+) HI BS (+) HI BS (+) HI HI BS (+) HI B		BS (+) HI FS (-) Elevation Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure Image: Second structure				ThalwegWater SurfaceBa/fullBS (+)HIFS (-)ElevationFS (-)ElevationFS (-)ElevationImage: Second		TheTheWaterBar-IIITop of U-WankBar Man (1)BS (+)HIFS (-)ElevationFS (-)ElevationFS (-)ElevationFS (-)ElevationImage: Solution (1)FS (-)Image: Solution (1)FS (-)Image: Solution (1)FS (-)Elevation (1)FS (-)Elevation (1)Image: Solution (1)Image: Solutio	<table-container>Image: bornersImage: bornersImage</table-container>

Minnesota Stream Quantification Tool Longitudinal Profile Form

Survey:		Tha	lweg	Water	Surface		nkfull	Top of I	.ow Bank			
Station	BS (+)	н	FS (-)	Elevation	FS (-)	Elevation	FS (-)	Elevation	FS (-)	Elevation	FS (-)	Elevation
				1							1	
				1				1		1	1	

LARGE WOODY DEBRIS FIELD FORM

Date Revised: 10/19/2016

										Dule Revised	. 10/15/2010	
Investigator(s)				State				Forest Type	Deciduous	s Evergreen	Mixed	Othe
Date				County				Forest Age (yrs)				
Stream Name				Phys. Province				Latitude (dd)				
Reach ID				Drainage Area (mi ²)		Longitude (dd)						
Watershed Name				Dominant Species								
Survey Length (ft)	328	Survey Length :	= 328 ft/100 m	BKF Width (ft)				Slope (ft/ft)				
Stream Classification	Ephemer	al Intermittent	Perennial	BKF Mean Depth (ft)				Bed material				
Stream Condition	Degraded	Restored Referen	ice Managed	Floodprone Width (ft)				Rosgen Type				
Field Notes:												
					SCOR	E						
		1		2		3		4		5		
CATEGORY					* PIECE	S *	T				TOTAL P	IECES
Length/BKF Width	0 to 0.4		0.4 to 0.6		0.6 to 0.8		0.8 to 1.0		> 1.0			
Diameter (cm)	10 to 20		20 to 30		30 to 40		40 to 50		>50			
Location	Zone 4 (Above BKF/Extending into Channel)				Zone 3 (Above BKF/Within Streambanks)		Zone 2 (Above WS/Below BKF)		Zone 1 (Below WS)			
Туре	Bridge				Ramp		Submersed		Buried			
Structure	Plain		Plain/Int		Intermediate		Int/Sticky		Sticky			
Stability	Moveable		Mov/Int		Intermediate		Int/Sec		Secured			
Orientation (deg)	0 to 20		20 to 40		40 to 60		60 to 80		80 to 90			
Total												
CATEGORY					** DEBRIS D	AMS **					TOTAL	DAMS
Length (% of BKF Width)	0 to 20		20 to 40		40 to 60		60 to 80		80 to 100			
Height (% of BKF Depth)	0 to 20		20 to 40		40 to 60		60 to 80		80 to 100			
Structure	Coarse		Coarse/Int		Intermediate		Int/Fine		Fine			
Location	Partially high flow		In high flow		Partially low flow		Mid low flow		In low flow			
Stability	Moveable		Mov/Int		Intermediate		Int/Sec		Secured			
								Total		LWDI	-	
* Pieces - Non-living woo	od that has a large	e end diameter ≥ 10 cm	and has a length ≥ 1	m. ** Debris Dams - Three	(3) or more piece	es touching.						

LARGE WOODY DEBRIS FIELD FORM

Revised:	10/18/2016

LARGE WOOD											Revised: 10/18/201
Investigator(s)				State				Forest Type			
Date				County				Forest Age (yrs)			
Stream Name				Phys. Province				Latitude (dd)			
Reach ID				Drainage Area (mi ²)				Longitude (dd)			
Watershed Name				Dominant Species							
Survey Length (ft)	328	Survey Length = 328 ft/10)0 m	BKF Width (ft)				Slope (ft/ft)			
Stream Classification				BKF Mean Depth (ft)				Bed material			
Stream Condition				Floodprone Width (ft)				Rosgen Type			
Field Notes:											
					:	SCORE					
		1		2		3		4		5	
CATEGORY					*	PIECES *					PIECE SCORES
Length/BKF Width	0 to 0.4		0.4 to 0.6		0.6 to 0.8		0.8 to 1.0		> 1.0		0
Diameter (cm)	10 to 20		20 to 30		30 to 40		40 to 50		>50		0
Location	Zone 4 (Above BKF/Hanging into Ch)				Zone 3 (Above BKF/Within Streambanks)		Zone 2 (Above WS/Below BKF)		Zone 1 (Below WS)		0
Туре	Bridge				Ramp		Submersed		Buried		0
Structure	Plain		Plain/Int		Intermediate		Int/Sticky		Sticky		0
Stability	Moveable		Mov/Int		Intermediate		Int/Sec		Secured		0
Orientation (deg)	0 to 20		20 to 40		40 to 60		60 to 80		80 to 90		0
CATEGORY					** DEE	RIS DAMS **					DAM SCORES
Length (% of BKF Width)	0 to 20		20 to 40		40 to 60		60 to 80		80 to 100		0
Height (% of BKF Depth)	0 to 20		20 to 40		40 to 60		60 to 80		80 to 100		0
Structure	Coarse		Coarse/Int		Intermediate		Int/Fine		Fine		0
Location	Partially high flow		In high flow		Partially low flow		Mid low flow		In low flow		0
Stability	Moveable		Mov/Int		Intermediate		Int/Sec		Secured		0
Additional Notes:											

	LV	VDI Summary																
Sheet	No.	Reach ID	Stream Name	Physiographic Province	Stream Condition	Rosgen Type	Drainage Area mi ²	Slope ft/ft	Stream Classificatior	Latitude n	Longitude	No. of Pieces	No. of Dams	Pieces + Dams	Piece Score	Dam Score	Weighted Dan Score	LWDI
_Blank_Data_Entry_	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	3	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	4	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	5	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	6	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	7	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	8	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	9	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	10	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!

Minnesota Stream Quantification Tool Lateral Migration Form

Date: Investigators:

Reach ID:

Valley Type:

Bed Material:

				Bank Erosion Hazard Index									
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking		

Date: Investigators:

NBS Ranking	Enter Bank Lengt	n from all rows on p.:	mmary Table 1 with same r			Length (Feet)	
Ex/Ex							T
Ex/VH							1
Ex/H							
Ex/M							1
Ex/L							
Ex/VL							1
VH/Ex							
Vh/VH							
VH/H							
VH/M							
VH/L							
VH/VL							1
, H/Ex							
H/VH							1
, Н/Н							
H/M							
H/L							1
H/VL							
M/Ex							1
M/VH							
M/H							
M/M							
M/L							
M/VL							
L/Ex							
L/VH							
L/H							
L/M							
L/L							
L/VL							
VL/Ex							
VL/VH							
VL/H							
VL/M							
VL/L							
VL/VL							

Total Bank Length: Total Eroding Bank Length:

Percent Bank Erosion (%):

Shading Key					
Field Value					
Calculation					

PEBBLE COUNT DATA SHEET

SITE OR PROJECT:

REACH/LOCATION:

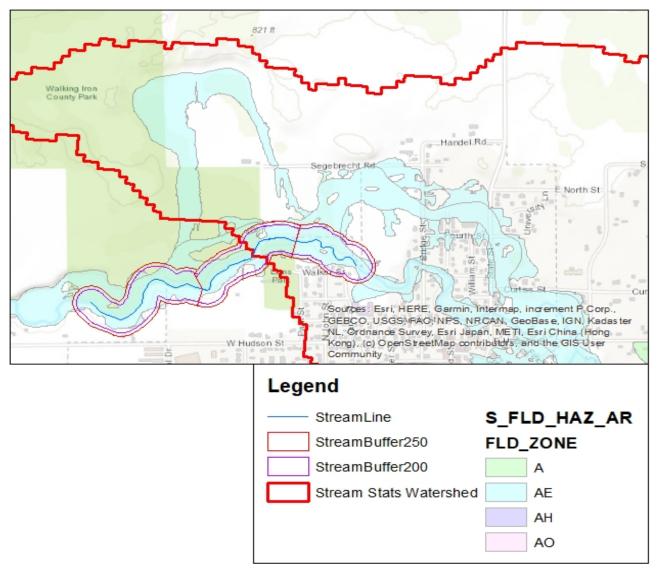
DATE COLLECTED:

FIELD COLLECTION BY:

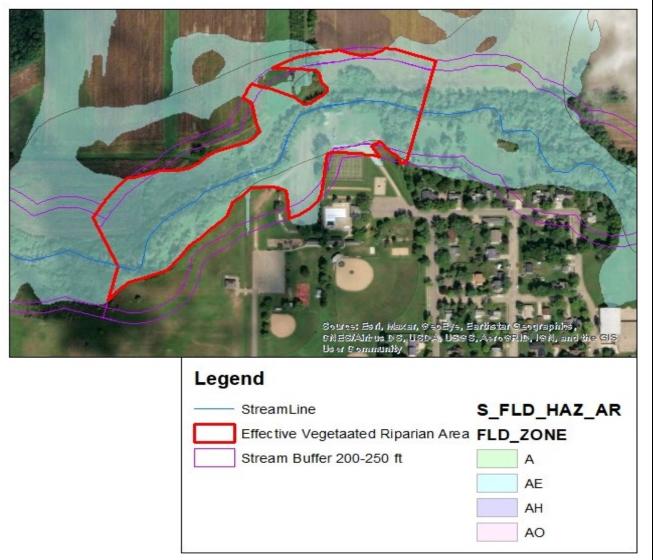
DATA ENTERED BY:

			PARTICLE CLASS			Reac	h Summary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Pool	Total	Class %	% Cum
	Silt / Clay	< .063					
	Very Fine	.063125					
	Fine	.12525					
	Medium	.2550					
	Coarse	.50 - 1.0					
	Very Coarse	1.0 - 2.0					
	Very Fine	2.0 - 2.8					
	Very Fine	2.8 - 4.0					
	Fine	4.0 - 5.6					
	Fine	5.6 - 8.0					
	Medium	8.0 - 11.0					
	Medium	11.0 - 16.0					
	Coarse	16 - 22.6					
	Coarse	22.6 - 32					
	Very Coarse	32 - 45					
	Very Coarse	45 - 64					
	Small	64 - 90					
	Small	90 - 128					
	Large	128 - 180					
	Large	180 - 256					
	Small	256 - 362					
	Small	362 - 512					
	Medium	512 - 1024					
	Large-Very Large	1024 - 2048					
	Bedrock	> 2048					

Totals


Effective Vegetated Riparian Area Documentation Form

Reach Name: Black Creek - Walking Iron County Park Bankfull Width: 64 feet from regional curve, 50 feet measured from aerial images. Valley Type: Unconfined Alluvial Valley Effective Riparian Area Width Calculation (ft): Wbankfull _____ 50-64_ (ft) * MWR ____ 7_ + 2 * Wadditional _____ 25 ____ (ft)


400' to 500'

Insert Image/Map with aerial photo base and topographic contour elevations showing application of effective riparian width to stream channel per Steps 1 through 5 in Appendix A. Show channel center points and associated riparian width lines.

Wide valley, topo hillslopes not evident in USGS mapping on GIS. Pulled FEMA SFHA mapping for 100-year FP overlap with effective polygon.

Insert Image/Map with aerial photo base and topographic contour elevations showing Effective Riparian Area Polygon (Step 6 in Appendix A):

Size of Effective Riparian Area Polygon: _____ Area to 250 ft buffer, assuming 64ft bankfull width. Area to 200 ft buffer, assuming 50ft bankfull width.

_ (square meters).

té: Esri, Waxar, Géollys, Earths BiAirbus Dá, UáDA, UáGá, Aér OGRID the Community Vegetated widths range from 100 - 300 feet. Average width (FT) based on area calculations: 160.08 Insert Image/Map with aerial photo base showing areas determined to be non-vegetated per Step 7 in User Manual (2.7.E): Green delineated area (24,670 sq.m.) is assumed vegetated based on aerial imagery and will be confirmed in the field. The remainder is considered not vegetated/artificial vegetation. 24,670 30,760 Total size of area within Effective Riparian Area that is Non-Vegetated (square meters): 24,630 45% Percent of Effective Riparian Area that is Vegetated:

55,430 49,300

50%

Date: Investigators:		Minnesc	ota Stream Quantification Too Riparian Width Fori
	lking Iron County 558 feet		Shading Key Desktop Value Field Value Calculation
Plot ID:	Reach STA:		
Effective Vegetated Ripa	rian Width ¹ (ft)	113	
Artificial Veg. Widths ²	Width (ft) 92	Width (ft)	Width (ft)
Type of Artificial Vegetation ³			
Actual Vegetated Area Width (ft) ⁴	21	
Plot ID:	Reach STA:		
Effective Vegetated Ripa		113	
Artificial Veg. Widths ²	Width (ft) 84	Width (ft)	Width (ft)
Type of Artificial Vegetation ³			
Actual Vegetated Area Width ⁴	(ft)	29	
Plot ID: Effective Vegetated Ripa		320	
Artificial Veg. Widths ²	Width (ft) 309	Width (ft)	Width (ft)
Type of Artificial Vegetation ³			
Actual Vegetated Area Width ⁴	(ft)	11	
Plot ID:	Reach STA:		
	·	320	
Effective Vegetated Ripa	Width (ft)	Width (ft)	Width (ft)
Artificial Veg. Widths ²	292	what in (it)	
Type of Artificial Vegetation ³			
Actual Vegetated Area Width ⁴	(ft)	28	
Plot ID:	Reach STA:		
Effective Vegetated Ripa			
Artificial Veg. Widths ²	Width (ft)	Width (ft)	Width (ft)
Type of Artificial Vegetation ³			
Actual Vegetated Area Width ⁴	(ft)	0	

¹ Calculated value using equation from in Riparian Vegetation section of Field manual.

 $^{\rm 2}$ If artificial vegetation is identified, measure widths and enter into cells to the right.

³ Examples of artificial vegetation: lawns, ag. crops, roads, paths, buildings, utility easements, etc.)

⁴ Is the Expected Vegetated Area Width minus the sum of all artificial vegetation widths for this plot id/reach sta.

Date:

Investigators:

Black Creek - Walking Iron County Park

Reach Name: Reach Length:

Minnesota Stream Quantification Tool Riparian Area Form

Riparian Width & Area

Desktop	Review	Values
---------	--------	--------

Effective Vegetated Riparian Area Width ¹ (ft)	320		
Total Reach Length (ft)	1658		
Estimate of Effective Vegetated Riparian Area (ft ²)	530,560		

Metric Area Conversion

Estimate of Effective Vegetated Riparian Area (m ²)	49,291
---	--------

Sampling Plots

Riparian Vegetation Plot Area Needed for 2% Coverage (m²)

Total 5m x 5m plots needed 39

Total 10m x 10m plots needed 10

986

Field Verification

Average of Actual Vegetated Riparian Widths ² (ft)	22
Total Reach Length (ft)	1658

Actual Vegetated Riparian Area (ft ²)	36,476
Actual Vegetated Riparian Area (m ²)	3,389

% of Riparian Area that is Vegetated 6.9

 1 Calculated value using equation from in Riparian Vegetation section of Field manual.

² Value determined from field measurements (exclusion of artificial/non-vegetated areas).

Shading Key
Desktop Value
Field Value
Calculation

Date: Investigators:

Project/Reach N	ame:						
Plot ID#							
Side		Left or Right side o	of strear	n (view facing down	stream)		
	Re	elative Areal Cov	/er ¹ by	Strata			
Strata	Strata P	Cover Midpt.	Range	Midpt.			
Herb	all veg < 1.3	7 m in height ²		>95-100%	97.5%		
Shrub	woody veg 1.37m in h		>75-95%	85.0%			
Tree	woody veg ≥1.37m in h		>50-75%	62.5%			
Canopy	sum of shrub + tree				>25-50%	37.50%	
	N	otes:		•	>5-25%	15%	
					>1-5%	3%	
					>0-1%	0.50%	
					0%	0.00%	
¹ Relative Areal Cover i	s the proportional cover by vege	tation as a percentage o	f the total	l plot, ranging from 0-100	%.		
	f a woody, perennial stem, mea		d of longe	st woody stem (rather the	an the height ab	ove the ground).	
³ Dbh is measured in ce	entimeters at a height of 1.37m	above ground.					
	Wo	oody Stem Basal	Area	by dbh ^A			
Write down the plot di	mensions used (e.g. 5m x 5m)			List the plot size in h	nectares from tal	ble below	
Plot	Dimensions			Plot Size (ha)			
	DBH Midpoint/Actual	Individual					
DBH Classes (cm)	DBH (cm) ^A	BA/Stem (m ²)	Х ^В	Plot BA on	hectare ba	sis (m²/ha)	
0 - 2.5	1.25	0			#DIV/0!		
2.5 - 5.0	3.75	0					
5.0 - 7.5	6.75	0					
7.5 - 12.5	10.00	0		Plot	Area (ha)	Туре	
12.5 - 20.5	16.50	0		5m x 5m	0.0025	Full	
20.5 - 30.5	25.50	0		10m x 10m	0.01	Full	
		0		2m x 5m	0.001	Sub-Plot ^C	
		0		2m x 10m	0.002	Sub-Plot ^C	
		0					
		0					
		0		BA (m ²)	= 0.00007854 * (dbh ²)		
		0					
>30.5		0			<u>Plot BA Tota</u>	l (m2)	
		0		BA (m²/ha) =	Plot Size (ha)	
		0					
		0					
		0		Shading	Кеу		
		0		Field Va	alue		
		0		Calcula	tion		
	Plot BA Total:	0.000000	m²				
^A Dbh is measured in ce	entimeters at a height of 1.37m	above ground.		1			

^B The user can input the actual stem count by dbh midpoint or individually measured dbh's >30.5 cm.

Example . 12, 1-cm stems. Enter 1 under dbh (cm). Enter 12 in this column and the BA will be calculated correctly.

^C Subplot is a 1-meter wide strip along the right and left sides of either a 10m x 10m or 5m x 5m plots. Cannot be used for post-project assessment if woody plantings present.

Date: Investigators:

Project/Reach N	ame:						
Plot ID#							
Side		Left or Right side o	of strear	n (view facing down	stream)		
	Re	elative Areal Cov	/er ¹ by	Strata			
Strata	Strata P	Cover Midpt.	Range	Midpt.			
Herb	all veg < 1.3	7 m in height ²		>95-100%	97.5%		
Shrub	woody veg 1.37m in h		>75-95%	85.0%			
Tree	woody veg ≥1.37m in h		>50-75%	62.5%			
Canopy	sum of shrub + tree				>25-50%	37.50%	
	N	otes:		•	>5-25%	15%	
					>1-5%	3%	
					>0-1%	0.50%	
					0%	0.00%	
¹ Relative Areal Cover i	s the proportional cover by vege	tation as a percentage o	f the total	l plot, ranging from 0-100	%.		
	f a woody, perennial stem, mea		d of longe	st woody stem (rather the	an the height ab	ove the ground).	
³ Dbh is measured in ce	entimeters at a height of 1.37m	above ground.					
	Wo	oody Stem Basal	Area	by dbh ^A			
Write down the plot di	mensions used (e.g. 5m x 5m)			List the plot size in h	nectares from tal	ble below	
Plot	Dimensions			Plot Size (ha)			
	DBH Midpoint/Actual	Individual					
DBH Classes (cm)	DBH (cm) ^A	BA/Stem (m ²)	Х ^В	Plot BA on	hectare ba	sis (m²/ha)	
0 - 2.5	1.25	0			#DIV/0!		
2.5 - 5.0	3.75	0					
5.0 - 7.5	6.75	0					
7.5 - 12.5	10.00	0		Plot	Area (ha)	Туре	
12.5 - 20.5	16.50	0		5m x 5m	0.0025	Full	
20.5 - 30.5	25.50	0		10m x 10m	0.01	Full	
		0		2m x 5m	0.001	Sub-Plot ^C	
		0		2m x 10m	0.002	Sub-Plot ^C	
		0					
		0					
		0		BA (m ²)	= 0.00007854 * (dbh ²)		
		0					
>30.5		0			<u>Plot BA Tota</u>	l (m2)	
		0		BA (m²/ha) =	Plot Size (ha)	
		0					
		0					
		0		Shading	Кеу		
		0		Field Va	alue		
		0		Calcula	tion		
	Plot BA Total:	0.000000	m²				
^A Dbh is measured in ce	entimeters at a height of 1.37m	above ground.		1			

^B The user can input the actual stem count by dbh midpoint or individually measured dbh's >30.5 cm.

Example . 12, 1-cm stems. Enter 1 under dbh (cm). Enter 12 in this column and the BA will be calculated correctly.

^C Subplot is a 1-meter wide strip along the right and left sides of either a 10m x 10m or 5m x 5m plots. Cannot be used for post-project assessment if woody plantings present.

VISIT SUMMARY

VISIT INFORMATION

=================				
Field Number:	Stream Name:			
	Crew:			
	(check one in appropriate column):			
<u>Reportable</u>			on-reportable	
	and representative sample		Non-reportable: Unsatisfactory t	
□Reportable: Low samp	ole size (<25 fish)		Non-reportable: Outside base flo	ow,
<u>Replicate</u>		<u>N</u>	ot sampled	
□Replicate: Sufficient a	nd representative sample		Non-sampleable: Insufficient flo	w
□Replicate: Low sample	e size (<25 fish)		Non-sampleable: Beaver dam –	
			Non-sampleable: No definable o	channel
			Non-sampleable: Other (explain	in
If GPS coordinates take	n during site visit:			
DS FileName:			US FileName:	
DS Lat:	X Lat:		US Lat:	_
DS Lon:	X Lon:		US Lon:	_
FIELD WATER				
CHEMISTRY=====				
#:	Water Temp. (°C): Conductivity (umhos@25°C): _ %DO Saturation: Secch	pH:	Dissolved Oxygen	
(DO)(mg/l):	%DO Saturation: Secch	ni Tube:/100cm		
Water Level: Norma	al 🛛 Below(m)	□ Above(m)		
	necked indicate intensity in comments)	Currently raining	□ Rain yesterday	
LAB WATER CHEN				
Chem. Sample ID (field	sample): Chem. San	mple ID (field duplicate):		Collection
	Collection Time (field	i duplicate):		
	ANCE MEASUREMENT			
CHANNEL CHARA	CTERISTICS===============			
	Station Length (m):			
	ck appropriate box):		□ Old Channelization	
	o the ratings and codes on the backsid			
	Recreational Suitability: S		/	
	be low gradient? □ No □ Yes			
COMMENTS/NOTE	S:			

(Revised April 2014)

Visual Condition - Ratings and Codes

1A 1B 2	Clear – crystal, clear transparent water Tea-colored – transparent water, which has been colored by dissolved organic matter from upstream bogs or wetlands
	wetlands
2	
	Cloudy – not quite crystal clear; cloudy white, gray or light brown
3	Muddy – cloudy brown due to high sediment levels
4	Green – due to algae growth; indicative of excess nutrients released into stream
5	Muddy AND Green – a combination of cloudy brown from high sediment levels and green from algae growth
ATING	RECREATIONAL SUITABILITY DEFINITION
1	Beautiful, could not be better
2	Very minor aesthetic problems: excellent for body-contact recreation
3	Body-contact recreation and aesthetic enjoyment slightly impaired
4	Recreation potential and level of enjoyment of the stream substantially reduced (would not swim but boating/canoeing is okay)
5	Swimming and aesthetic enjoyment of the stream nearly impossible
STREAM	I CONDITION: N=Normal, L=Low, Z= No Flow, D=Dry, I=Interstitial, H=High SW=Swift, SL=Slow, MO=Moderate C=Clear, M=Muddy, O=Other
	Site Characteristics (check all that apply) (note any comments):
	ity only slow, or slow and moderate
Riffles abse	ent or representing very low percentage of reach (typically <5%)
Dominated	(>80%) by fines (silt, sand, detritus), coarse substrate uncommon (<10%)
Wetland ve	getation (cattails, arum, water lily, etc.) in channel or riparian zone
t looks like	e a low gradient stream
	5 TING 1 2 3 4 5 STREAN Gradient iow veloc iffles abso Dominated Vetland ve

PROCEDURE FOR TEMPERATURE LOGGER DEPLOYMENT AT STREAM MONITORING SITES

updated 04/30/2015

I. PURPOSE

To describe the methods used by the Minnesota Pollution Control Agency's (MPCA) Biological Monitoring Program to place, check and retrieve temperature loggers that are placed at stream biological monitoring sites.

II. SCOPE/LIMITATIONS

This procedure applies to all sites where a temperature logger is placed.

III. GENERAL INFORMATION

Sites may be selected to have a temperature logger placed for a number of reasons including:

- 1) Site is a designated coldwater stream
- 2) Site is a 10x water chemistry site
- 3) Site is a Long Term Monitoring Reference site
- 4) Site thought to be coldwater, although not currently designated
- 5) Site is in coldwater/warmwater transition zone
- 6) Site is warmwater and chosen for further warmwater or climate change data collection

IV. REQUIREMENTS

A. <u>Qualifications of crew leaders</u>: The crew leader must be a professional aquatic biologist with a minimum of a Bachelor of Science degree in aquatic biology or closely related specialization. Field crew leaders should also possess excellent map reading skills and a demonstrated proficiency in the use of a GPS (Global Positioning System) receiver and orienteering

B. <u>Qualifications of field technicians/student interns</u>: A field technician/student intern must have at least one year of college education and coursework in environmental and/or biological science.

C. <u>General qualifications</u>: All personnel conducting this procedure must have the ability to perform rigorous physical activity. It is often necessary to wade through streams and/or wetlands, canoe, or hike for long distances to reach a sampling site where a temperature logger may be placed.

V. RESPONSIBILITIES

A. <u>Field crew leader</u>: Implement the procedures outlined in the action steps and ensure that the data generated meets the standards and objectives of the Biological Monitoring Program.

B. <u>Technicians/interns</u>: Implement the procedures outlined in the action steps, including maintenance and stocking of equipment, data collection and recording.

VI. QUALITY ASSURANCE AND QUALITY CONTROL

A. <u>Logger QA/QC</u>: Every winter, all data loggers will be deployed and tested in a lab setting. All loggers will also be checked for battery life during data downloading in the fall.

B. Data QA/QC: All data collected by each temp logger each summer will be verified by trained staff to assure temperature logger was logging properly, and remained in the water, out of the sun, and did not become buried in sediment throughout the

VII. TRAINING

A. All inexperienced personnel will receive instruction from a trainer designated by the program manager. Major revisions in this protocol require that all personnel be re-trained in the revised protocol by an authorized trainer.

B. The field crew leader will provide instruction in the field and administer a field test to ensure personnel can execute this procedure.

A. Equipment List: Verify that all necessary items are present before commencement of this procedure (Table 1).

B. <u>Method</u>: Sites that require temperature loggers can generally be put in during recon, but if high water persists may be put in at a later date, but no later than May 31st. If suitable deployment locations do not exist within the stream reach, temperature logger can be placed above or below the stream reach.

- 1) Record the Temperature Logger Serial Number on the Temp Logger form before deploying the logger.
- 2) Find a suitable location that the temperature logger can be placed.
 - a. The logger should remain in the water column during the entire deployment and not exposed to the surface.
 - b. The location should be: out of direct sunlight; in flowing water; intermediate depth.
 - c. Logger should be placed no closer than 6 inches from the stream bottom to avoid siltation and burial.

d. Measures should be taken to avoid backwaters, eddies, standing water, point source discharges, lake outlets, springs, groundwater seeps, beaver activity, wetlands and wetlands in stream margins.

e. Measures should also be taken to choose a location that will protect the logger from future high velocities, substrate movement and debris that may dislodge the logger.

f. Water should be well mixed. This can be verified by taking numerous temperature measurements near the deployment location. A 10 measurement cross-section can be taken looking at variable stream temperature, dissolved oxygen levels and conductivity. Variability in measurements may indicate sources of thermal variation. If this is true, find a new deployment location.

g. Extra caution should be taken to place the temperature logger in a discrete location so they are not easily seen unless specifically looking for them. For watershed sites, locating the temperature logger at X, or further away from the road is preferred.

3) Attach the temperature logger to protective radiation shield.

a. Deployment methodologies.

i. Rebar – Adhere logger tightly to rebar with wire or heavy duty zip ties. In softer substrates this can be done by hand but in some areas hammers will help secure the rebar into the stream bed. Acceptable method in areas not heavily impacted by fine sediments (sand silt) or streams with unpredictable flows that may dislodge the rebar. Bent rebar can provide extra stability by securely anchoring the rebar into the substrate in two locations as well as allowing for easier deployment and retrieval.

ii. Dog tie – Adhere logger tightly to end of triangle tie with wire or heavy duty zip tie. Screw tie down into side of stream bank within the channel. Logger should be placed no closer than 6 inches from the stream bank to avoid potential groundwater influence. Acceptable method in streams

iii. Airline Cable – Adhere wire to stable location (rebar on stream bank not prone to collapse, around a tree on stream bank not prone to falling into the stream during a high flow event, a large boulder (in stream laden with bed rock, only if no fine sediment are present), or a bridge pillar or pilon). Wire can be crimped using cable ferrules or wire rope clips. If wire is adhered to object on stream bank measures should be taken to hide evidence of the deployment from would be vandals or curious citizens by hiding exposed wire under vegetation or rocks.

4) Take a GPS waypoint of the temperature logger. Name the waypoint with the prefix "TL" followed by the logger serial number (eg., TL644619). If the logger is later moved, and a new GPS point collected, label the new waypoint with the prefix "TL", the logger serial number, followed by the letter "M" for "moved" (e.g., TL644619M).

5) If the logger is deployed in a low traffic area, consider documenting the logger's location with a piece of flagging attached to a nearby tree or on the rebar stick.

6) Record the temperature of the water in the exact location of the logger. This should be done with a calibrated high precision electronic thermometer with a lead attached to the probe to get as close to the logger as possible.

7) Photograph the location of the logger by taking a photograph both upstream and downstream at deployment location and perpendicular to the stream towards the stream bank. Photographs will ease relocating the logger at future site visits

C. Temperature Logger Form

This form provides location, fish visit check, and retrieval notes for each temperature logger deployed. The form is completed upon placement of the temperature logger at the site.

C.1. Deployment Information

1) *Field Number* – A seven-digit code that uniquely identifies the station. The first two digits identify the year the station was established, the second two identify the major river basin, and the last three are numerically assigned in sequential order (example 02UM001). Assign the station an appropriate field number. For EMAP sites the last three digits should correspond to the sequential number provided by EPA for each site.

1) *Stream Name* – The name of the stream as shown on the most recent USGS 7.5" topographic map. Include all parts of the name (i.e. "North Branch", "Creek", "River", "Ditch", etc.).

- 2) Date The date fish sampling is conducted in month/day/year format (MM/DD/YY).
- 2) Crew The personnel who conducted the temperature logger deployment.
- 3) Temp Logger Serial Number The unique identifier of the individual temperature logger.
- 4) GPS Date The date that the final GPS file is taken in month/day/year format (MM/DD/YY).
- 5) GPS Time The time of day (24-hour clock) that the GPS file is taken.

6) *Latitude* – The angular distance north or south of the equator. Record the latitude of the temperature logger as displayed on the GPS receiver in degrees, minutes, seconds format.

7) *Longitude* – The angular distance east or west of the prime meridian. Record the longitude of the temperature logger as displayed on the GPS receiver in degrees, minutes, seconds format.

8) *Placement Description* – Detailed description of where the temperature logger was placed in relation to all features of the stream (Riffle/Run/Pool) and location within the longitudinal reach (Upstream (US) / Midreach(X) / Downstream (DS) and the lateral reach left bank (LB) / right bank (RB) / mid channel (Mid). Special attention needs to be given so staff members are able to come back and retrieve the logger based on this description.

9) *Comments* – Written explanation of the temperature logger's location and placement. Special attention needs to be given so staff members are able to come back and retrieve the logger based on this description. Example: Temp logger 5 meters upstream from X flag in pool 3 feet off of right bank. Pounded rebar down in gravel until TL was 6" off bottom.

10) *Photographs of reach segments (frame #)* - In the first photograph, identify the site by writing the field number on a piece of paper held within the picture frame. Take two pictures (one facing upstream and one facing downstream) at the exact deployment location and a straight shot perpendicular to (or facing) the stream bank. Record the order the photos were taken or the frame numbers of each photograph to assist in identifying the pictures for each site after developing or downloading.

11) Protective case - Indicate type of radiation shield (case) utilized during deployment PVC or Metal.

12) Precision thermometer # - Identify meter utilized to take temperature during temperature logger deployment.

13) *Temperature (C)* – Temperature recorded during temperature logger launch. Temperature is tested with a calibrated thermometer.

14) Time : Indicate the time of day (24-hour clock) that the temperature is taken at deployment.

C.2. Fish Visit Information:

1) Site Visit 1

- a. *Date* The date the temperature logger check was completed.
- b. *Crew* The personnel who conducted the temperature logger check.
- c. Was temp logger checked? A Yes/No option indicating whether or not the temperature logger was checked.

d. *TL in good location*? – A Yes/No option indicating whether or not the temperature logger was in an appropriate location.

e. *Comments* – Any additional comment about the condition the temp logger was found in.

f. *Precision thermometer* # - Identify meter utilized to take temperature during temperature logger during site visit.

g. Temperature (C) – Temperature recorded during site visit. Temperature is tested with a calibrated thermometer.

h. Time: Indicate the time of day (24-hour clock) that the temperature is taken.

2) Site Visit 2

a. Date – If there was a second visit, the date the temperature logger check was completed.

b. Crew – If there was a second visit, the personnel who conducted the temperature logger check.

c. *Was temp logger checked?* – If there was a second visit, a Yes/No option indicating whether or not the temperature logger was checked.

d. *TL in good location?* – If there was a second visit, a Yes/No option indicating whether or not the temperature logger was in an appropriate location.

e. *Comments* – If there was a second visit, any additional comment about the condition the temp logger was found in.

f. *Precision thermometer* # - If there was a second visit, identify meter utilized to take temperature during site visit.

g. *Temperature* (C) – If there was a second visit, temperature recorded during site visit. Temperature is tested with a calibrated thermometer.

h. Time: If there was a second visit, indicate the time of day (24-hour clock) that the temperature is taken.

3) Site Visit 3

a. Date - If there was a third visit, the date the temperature logger check was completed.

b. Crew – If there was a third visit, the personnel who conducted the temperature logger check.

c. *Was temp logger checked?* – If there was a third visit, a Yes/No option indicating whether or not the temperature logger was checked.

d. *TL in good location?* – If there was a third visit, a Yes/No option indicating whether or not the temperature logger was in an appropriate location.

e. *Comments* – If there was a third visit, any additional comment about the condition the temp logger was found in.

f. Precision thermometer # - If there was a third visit, identify meter utilized to take temperature during site visit.

g. *Temperature* (C) – If there was a third visit, temperature recorded during site visit. Temperature is tested with a calibrated thermometer.

h. Time : If there was a third visit, indicate the time of day (24-hour clock) that the temperature is taken.

C.4. If TL was moved...

1) Temp Logger Serial Number - The unique identifier of the individual temperature logger.

- 2) GPS Date The date that the final GPS file is taken in month/day/year format (MM/DD/YY).
- 3) GPS Time The time of day (24-hour clock) that the GPS file is taken.

4) *Latitude* – The angular distance north or south of the equator. Record the latitude of the temperature logger as displayed on the GPS receiver in degrees, minutes, seconds format.

5) *Longitude* – The angular distance east or west of the prime meridian. Record the longitude of the temperature logger as displayed on the GPS receiver in degrees, minutes, seconds format.

6) Placement Description – Detailed description of where the temperature logger was placed in relation to all features of the stream (Riffle/Run/Pool) and location within the longitudinal reach (Upstream (US) / Mid reach (X) / Downstream (DS) and the lateral reach left bank (LB) / right bank (RB) / mid channel (Mid). Special attention needs to be given so staff members are able to come back and retrieve the logger based on this description.

C.5. <u>Retrieval Notes</u>:

- i. *TL Retrieved* Check box, indicates whether or not the temperature logger was collected.
- j. Date Attempted If an unsuccessful attempt to collect temperature logger was made, indicate date here.
- k. *Crew* The personnel who conducted the unsuccessful temperature logger check.
- 1. Date Retrieved The date the temperature logger retrieval was completed.
- m. Retrieval Crew The personnel who conducted the successful temperature logger retrieval.

n. *Comments* – Any additional comments about where the temperature logger was found, especially noting if there were any issues with its location. If the temperature logger retrieval was unsuccessful indicate information about the search and whether or not additional attempts are warranted.

o. *Precision thermometer* # - Identify meter utilized to take temperature at temperature logger retrieval.

p. *Temperature* (C) – Temperature recorded during logger retrieval. Temperature is tested with a calibrated thermometer.

q. *Time:* Indicate the time of day (24-hour clock) that the temperature is taken at retrieval.

Table 1. Equipment List – This table identifies all equipment needed in order to deploy a temperature logger at a stream biological monitoring site.

Stream information sheet – for location of site 1:24,000 USGS topographical maps - for navigation to and from the sampling site County Platte maps - for determining land ownership Aerial photographs - for navigation to and from the sampling site DeLorme atlas - for vehicular navigation to and from the sampling site GPS receiver – to locate and document temperature logger location Flagging – to mark the temperature logger location if needed *Pencil* – for filling out forms Permanent marker - to label flagging Clipboard - to store forms/maps and record data Waders - because it is necessary to enter the stream to place temperature logger Cellular telephone – to contact landowners, to communicate between field crews, and for safety *Rebar* – for anchoring temperature logger into the stream bed Cable - for anchoring temperature logger to stable object Dog ties - for anchoring temperature logger to side of stream bank Cable Ferrules – for securing temperature logger to cable Wire Cutter and Crimper – for cutting wire and securing cable ferrules to cable Heavy duty Zip ties - for securing logger to rebar and dog ties Hammer - to assist in getting rebar into the stream bed Temperature Logger - to record temperature data Wire - to attach temperature logger to rebar or dog tie Temperature Logger Cases – radiation shields to protect temperature logger during deployment and (metal) enable deployment in streams with hard substrates (bedrock, cobble, boulder) Water Chemistry Meter – to take DO and Conductivity measurements during deployment to insure water at deployment location is well mixed. Calibrated Precision Thermometer - to record temperature at temperature logger deployment, site visits and temperature logger retrieval

Temperature Logger Form

(Revised 4/2015)

Deployment Information									
Field Number:	Stream Name:								
Date:	Crew:								
Temp Logger Serial Number	GPS Date	GPS Time							
Field GPS	Latitude	Longitude							
Decimal Degrees									
Placed in a: Riffle Run Pool Placed Ne	ear: US X DS / LB RB	Mid							
Comments:									
	emp Logger Deployment								
Site number: Logger looking DS:	Logger Looking US:	Straight on:							
	Deployment Method:								
Precision Thermometer	Temperature (C)	Time							
Vis	sit information								
	Crew:								
	TL in a good location (not at surface	, or buried)?							
Comments:									
Precision Thermometer #:	Temperature (C)	Time							
Date:	Crew:								
Was temp logger checked?	TL in a good location (not at surface	, or buried)?							
Comments:									
Precision Thermometer #:	Temperature (C)	Time							
Date:	Crew:								
Was temp logger checked?	TL in a good location (not at surface, or buried)?								
Comments:	3 (, ,							
	Temperature (C)	Time							
If TL was moved to a new location, please of									
Temp Logger Serial Number	GPS Date	GPS Time							
Field GPS	Latitude	Longitude							
Decimal Degrees									
Placed in a: Riffle Run Pool Placed Ne	ear: US X DS LB RB	Mid							
Comments:									
Re	etrieval Notes								
TL retrieved? If no, Date Attempted :	Crew:								
Date retrieved:	Retrieval Crew:								
Comments: (At water surface, out of water, buried,	no shade, surrounded by veg, looke	d good)							
Precision Thermometer #:	Temperature (C)	Time							

Date: Investigators:

Stream Name: Sub-reach Name:

Describe location within reach:

Dissolved Oxygen Logger Deployed?	🗆 Yes	□ No		
Date Deployed:		Frequency of data:	🗆 Daily	🗆 Other:
Date Retreived:		Timing of data:	🗆 1-3pm	□ Other:
Describe sensor location within reach:				
	<u> </u>			
Total Suspended Solids Sample Obtained?	Sample 1	ype:		
Date Obtained:				
Describe location within reach:				
Describe location within reach.				
Other Sensor Deployed?	Sensor T	vpe:		
Date Deployed:		/ l+		
Date Retreived:	1			
Frequency of data (if applicable):				

-MPCA Biological Monitoring Program-Macroinvertebrate Identification Lab Bench Sheet

Field Number				Sam	ple Date				
Site Name			Taxo	nomist:					
	QMH* QR HD	othor		ate of Sample ID: / /					
		s) and large/rare (I/r), both parts must be identi	fied	Date	of Sample ID.				
Order/Family	Genus	Species/Notes	ss	l/r	Order/Family	Genus	Species/Notes	SS	l/r
Ephemeroptera	Genus	Species/Notes	33		Odonata	Genus	Species/Notes	33	
Baetiscidae	Baetisca				Calopterygidae	Calopteryx			
Caenidae	Bracycercus				- 1 /5	Hetaerina			
	Caenis				Coenagrionidae	Argia			
Ephemerellidae	Attenella					Enallagma			
	Ephemerella					Nehalennia			
	Serratella				Lestidae	Lestes			
Ephemeridae	Ephemera				Aeshnidae	Aeschna			
1	Hexagenia					Anax			
Leptohyphidae Leptophlebiidae	Tricorythodes Leptophlebia					Basiaeschna Boyeria			
Leptophieblidae	Paraleptophlebia			1	Cordulegastridae	Cordulegaster			-
Polymitarcidae	Ephoron				Corduliidae	Cordulia			
Potamanthidae	Anthopotamus					Dorocordulia			
Heptageniidae	Epeorus			1		Epitheca		1	1
	Heptagenia					Somatochlora			
	Stenacron				Gomphidae	Dromogomphus			
	Stenonema					Gomphurus			
Isonychiidae	Isonychia					Gomphus			
Ametropodidae	Ametropus					Hagenius			
Baetidae	Acerpenna			-		Ophiogomphus			
	Baetis					Phanogomphus			
	Callibaetis Heterocloeon			-	notes/additional taxa	Progomphus			
notes/additional taxa	TIELETUCIDEUT				notes/additional taxa				
notoo additionar taxa									
					Hemiptera				
Plecoptera					Belostomatidae	Belstoma			
Leuctridae						Corixidae			
Taeniopterygidae					Corixidae	Hesperocorixa			
Perlidae	Acroneuria					Sigara			
	Agnetina Attaneuria			-	Nanidaa	Trichocorixa Ranatra			-
	Neoperla				Nepidae Notonectidae	Buenoa			1
	Paragnetina				Notoricelidae	Notonecta			
	Perlinella				notes/additional taxa	Hotonoota			1
Perlodidae									
Pteronarycyidae	Pteronarcys								
notes/additional taxa		•							
					Amphipoda				
					Talitridae	Hyallela	azteca	<u> </u>	<u> </u>
			r	1	Gammaridae	Gammarus		I	1
Lepidoptera Dyrolidoo	Parapapur			ł	notes/additional taxa				
Pyralidae	Paraponyx Petrophila			<u> </u>					
notes/additional taxa		l	I	1	Decapoda				T
					Cambaridae	Cambarus		1	+
Megaloptera						Orconectes			+
Corydalidae	Chauliodes		1	1		Procambarus		1	1
	Corydalus				notes/additional taxa	•			·
	Nigronia								
Sialidae	Sialis								
notes/additional taxa					Pelecypoda			<u> </u>	<u> </u>
					Sphaeriidae			<u> </u>	+
	T	Γ		1	Corbiculidae				—
Isopoda Asselidae	Asselus		<u> </u>	<u> </u>	Unionidae				1
Asselidae notes/additional taxa	Asselus	I	L	1	notes/additional taxa				
entered into DataInverts	s by (initials) date _								

Order/Family	Genus	Species/Notes	SS	l/r	Order/Family	Genus	Species/Notes	SS	l/r
Trichoptera					Diptera				
Dipseudopsidae	Phylocentropus				Ceratopogonidae	Alluaudomyia			
Hydropsycidae	Ceratopsyche					Atrichopogon			
, , ,	Cheumatopsyche				-	Bezzia			
	Diplectrona					Ceratopogon			
	Hydropsyche					Culicoides		-	
	Potamyia				-	Nilobezzia			
Philopotamidae	Chimarra	[├ ───	+	Palpomyia			
miopolamidae				<u> </u>				+	
D = h + = = + + + + + + + + + + + + + + +	Dolophilodes			──	+	Probezzia			
Polycentropodidae	Cernotina			Ļ		Sphaeromias			
	Cyrnellus				Chironomidae	G.	_	<u> </u>	
	Neureclipsis	<u> </u>		 	Dixidae	Dixa			
	Paranyctiophylax			L		Dixella			
	Polycentropus	<u> </u>			Simuliidae	Simulium			
Psychomyiidae	Lype	<u> </u>			Tipulidae	Antocha			
	Psychomyia					Dicranota			
Glossosomatidae	Agapetus	1				Hexatoma			
	Glossosoma	1				Limnophila			
	Protoptila					Limonia			
Hydroptilidae	Hydroptila			[Pilaria		Τ	
	Leucotrichia			[Tipula			
	Mayatrichia	1			Athericidae	Atherix		1	1
	Oxyethira				Empididae	Hemerodromia			
	Orthotrichia			<u> </u>	Tabanidae	Chrysops	1	1	1
Rhyacophilidae	Rhyacophila				Tabaniado	Tabanus		-	
Brachyecentridae	Brachycentrus				notes/additional taxa	Tabanao			
Jacifycochindae	Micrasema				notes additional taxa				
Helicopsychidae	Helicopsyche	[├ ──					
epidostomatidae	Lepidostoma		łł	├ ───	<u> </u>				
				──				T	1
eptoceridae	Ceraclea			Ļ	Coleoptera				
	Leptocerus				Dytiscidae	Agabus	_	<u> </u>	
	Mystacides	<u> </u>		 		Laccophilus			
	Nectopsyche	<u> </u>				Liodessus			
	Oecetis				Gyrinidae	Dineutus			
	Trianodes	1				Gyrinus			
₋imnephilidae	Limnephilus	1			Elmidae	Ancyronyx			
	Hydatophylax					Dubiraphia			
Volannidae	Molanna					Macronychus			
Phryganeidae	Phryganea					Optioservus			
	Ptilostomis					Stenelmis			
Sericostomatidae	Agarodes				Hydrophilidae	Berosus			
notes/additional taxa	5					Helocombus			
						Laccobius			
					-	Sperchopsis		1	
					-	Tropisternus			
					-	Tropisternus			
					<u> </u>			┼───	
Gastronada		[,		<u> </u>			┼───	
Gastropoda	Forriggio	[┝───	+			+	
Ancylidae	Ferrissia			┝───	Annalista	Olizaehacta		┿	
Planorbidae	Helisoma			┝───	Annelida	Oligochaeta	+	—	<u> </u>
	Promentus	·		┝───		Hirudinea			I
	Planorbula			L	notes/additional taxa				
	Gyraulus	L		L	<u> </u>				
/ivaparidae	Campeloma								
₋ymnaeidae	Lymnaea								
	Bulimnea								
	Fossaria			[Hydracarina (trombido	oformes, acarina)		Τ	
		<u> </u>		L	•				
Hydrobiidae	Amnicola				Nematoda				
Pleuroceridae	Pleurocera				notes/additional taxa				
	Physa			[
Physidae									
Physidae notes/additional taxa									

entered into DataInverts by _____ --- (initials) date _

Field Number	Sample Date	Sample Type *	# Sample Bottles	Sample S	Sorting Date	# Organisms Picked	# Squares Picked**	L/R (y/n)	Chiro toVial (y/n)
				Begin	End				

Macroinvertebrate Sample Sorting Bench Sheet

* QMH, QR, HD, WTL ** Applies only to samples being subsampled

Field	Samplin g Date	Sample Type	Initials of QC Sorter	# Organisms found in QC	# Organisms originally found in	Sorting Efficiency	Date QC Sort Completed
Number					sample		

Macroinvertebrate Sorting QC Form

Minnesota Pollution Control Agency

MPCA Stream Monitoring Program INVERTEBRATE VISIT FORM

Stream Name:					Da	Date:					
Field Number:			County:			Crew:					
Water Chemistry Tape Down:						1/100ths ft) Location:					
	Time: (24 hr): Air Temp: (°C) Wat DO:(mg/L) DO % Saturation: Water Level: Normal Below (m) Above						Temp: (°C) Conductivity: (umhos@25°C) pH: Secchi -Tube: (cm) (m) Color (pcu)				
	Level: Normal	Below	(m) A	bove			(m) Color	(pcu)		
If Flagging is not found or if establishing a new site, fill out GPS info											
	Coordinates		LATITUDE				GITUTDE	Time:			
Field GPS:					. Name:						
Notes:											
			S	Stream Cla	assif	icati	ion Information				
]	Flow over riffle(s)]	High / Med / Low	/ NA	-	lel	Excavated, trapezoidal ch	nannel	%		
>	Flow at reach constrict	Flow at reach constriction		ligh / Med / Low / NA		Channel	Shallow excavation, char	nelized wetland	%		
Flow	Flow over run]	High / Med / Low	/led / Low / NA			Natural channel		%		
	General flow pattern]	High / Med / Low	ow / NA		u	Emergent, aquatic vegeta	tion in channel	Ext / Mod / Sparse / NA		
]	Intermittent sections	1	Yes / No	es / No			Emergent, aquatic vegeta	*	Ext / Mod / Sparse / NA		
at	Riffle (with flow) present in reach					Vegetation	Floating or submerged ac	U U	Ext / Mod / Sparse / NA		
	Riffle (with flow) present outside of reach (riffles do not include riprap associated with bridges or bank stabilization)					< S	Loosely attached filamen	U	Ext / Mod / Sparse / NA Ext / Mod / Sparse / NA		
Η̈́						tic M					
	Dominant invertebrate habitat (circle two) Riffle Rocky Run-Pool Aquatic M Dominant Run Substrate bedrock / boulder / cobble / gravel /										
Substrate	Dominant Pool Substra		pedrock / boulder		/ sand / silt						
ubs	Dominant Substrate receiving flow bedrock / boulder / cobble / gravel						sand / silt				
<u> </u>	Dominant Substrate in		edrock / boulder /		0						
							ns inadequate flow to mair support these assemblages (riffles,				
	Stream has adquate flow to r	Ű						fock substrate in runs of pools)			
	Stream is low gradient, strea			-		-					
	Invertebra	ate Sample I	nformation	-			Additional Biological Information				
Invertebrate Sample Information Qualitative Multi-Habitat Sample (QMH)							Presence of freshwater sponge yes / no				
	0 samples equally among	habitat types pre	sent in the reach. If the				Presence of exotic species yes / no				
-	nt take 7 samples in each						Presence of mussels ves / no				
	habitat is present, but not in abundance to sample in equal proportion to other habitats, sample as much as possible and divide the remaining samples between the dominant habita						Description of mussel density and/or mussel bed location:				
types.	•										
✓		Habitat		#Sampl	es						
	rock riffle/run Fl	low adequate to	carry insects								
	rock substrate A	rtificial flow no	eeded to carry								
	in	insect into net									
						_					
	aquatic macrophyte undercut bank, overhanging veg					-	Notes				
						_					
	snag, woody debris, root wad					-					
□ leaf pack											
Num	ber of multihabitat c	ontainers:				-					
1						Pic	tures #: DD DU	MDMUU	D UU		

-MPCA Biological Monitoring Program-

Macroinvertebrate Identification QC Form

Field Number	Sample Date	Identifier	s' Initials	Discrepancies		Comments	Total # of Conflicts	Total # of Taxa	Precision	
		Original ID	QC ID	Original Identification	QC Identification				Original ID	QC ID

Stream Sample External Label:

MPCA Bioassessment – Invertebrate Sample Sample Preservative - 100% reagent alcohol / 10% formalin Sample Type: QMH / RTH Sample Composition: Riffle / Bank / Wood / Veg Date/20 (mm/dd/yyyy)								
Station Name Station ID								
Site Visit 1 / 2 Sample Jar of Collectors Stream Sample Internal Label:								
Invertebrate Sample – sample type								
Site Name:								
Field Number								
Date: / / Bottle No. of Collected by:								

FISH SURVEY RECORD

MPCA

Field Number:		Stream Name:							
Date (mm/dd/yyyy):		Crew:							
Gear Type (circle one): Backpack* Stream-electrofisher Boom-electrofisher Mini-Boom									
*Type of Backpack (circle one): Generator LR-24 Halltech									
Channel Position: Right Bank Mid-Channel Left Bank (circle one if boom-electrofisher site)									
Distance (m):	Time	Fished (sec):		Identi	fied By:				
Visit Comments:		· · · ·			,				
Species (common name)		Length Range	Weight (g)	Number	Anomalies or YOY				
		(mm)							
1.									
2.									
3.									
4.									
5.									
6.									
7.									
8.									
9.									
10.									
11.									
12.									
13.									
14.									
15.									
16.									
17.									
18.									
19.									
20.									
21.									
22.									
23.									
23. 24.									
24. 25.									
26.									
27.									
28.									

Anomalies: A-anchor worm; B-black spot; C-leeches; D-deformities; E-eroded fins; F-fungus; G-yellow grub; L-lesions; N-blind; P=parasites; PL-parasite lesion; Y-popeye; S-emaciated; W-swirled scales; T-tumors; Z-other.

(Cont.)

	Species (common name)	Length Range (mm)	Weight (g)	Number	Anomalies or YOY
29.	•	, , ,			
30.					
31.					
32.					
33.					
34.					
35.					
36.					
37.					
38.					

INDIVIDUAL OR BATCH MEASUREMENTS

(common name) (mm) Image: Common name) 1. Image: Common name) Image: Common name) Image: Common name) 2. Image: Common name) Image: Common name) Image: Common name) 2. Image: Common name) Image: Common name) Image: Common name) 3. Image: Common name) Image: Common name) Image: Common name) 3. Image: Common name) Image: Common name) Image: Common name) 4. Image: Common name) Image: Common name) Image: Common name) 5. Image: Common name) Image: Common name) Image: Common name) 6. Image: Common name) Image: Common name) Image: Common name) 7. Image: Common name) Image: Common name) Image: Common name) 10. Image: Common name) Image: Common name) Image: Common name) 11. Image: Common name) Image: Common name) Image: Common name) 11. Image: Common name) Image: Common name) Image: Common name) 12. Image: Common name) Image: Common name) Image: Common na	Species	Length Range	Weight (g)	Number	Anomalies or YOY
2.	(common name)	(mm)			
3. Image: Constraint of the second secon	1.				
4. 5. 6. 7. 8. 9. 10. .	2.				
5. Image: Constraint of the second secon					
6.	4.				
7.	5.				
8. Image: Constraint of the second secon	6.				
9. Image: state stat					
10. Image: constraint of the system of t	8.				
11. Image: constraint of the system of t	9.				
12. Image: constraint of the system of t					
13. Image: constraint of the system of t	11.				
14. Image: style sty					
15. Image: constraint of the system of t					
16. Image: Constraint of the system of t	14.				
17. Image: Constraint of the system of t					
18. Image: Constraint of the system of t	16.				
19. Image: Constraint of the second seco	17.				
20. 21. 21. 22. 22. 23. 23. 23. 24. 24. 25. 26. 26. 27. 28. 28. 29. 20. 30. 31. 23.	18.				
21. 21. 22. 22. 22. 23. 23. 23. 24. 24. 24. 24. 25. 26. 27. 26. 27. 28. 29. 29. 21. 30. 31. 23.	19.				
23. Image: Constraint of the second seco	20.				
23. Image: Constraint of the second seco	21.				
23. Image: Constraint of the second seco	22.				
25. 26. 26. 27. 27. 28. 28. 29. 29. 30. 31. 20.	23.				
26. 27. 27. 28. 28. 29. 30. 29. 31. 29.	24.				
27. 27. 28. 29. 30. 20. 31. 20.	25.				
28. 29. 30. 29. 31. 20.	26.				
28. 29. 30. 29. 31. 20.	27.				
30. 31.	28.				
31.	29.				
31.	30.				
32.	31.				
	32.				

Instructions:

This spreadsheet automatically calculates bank erosion rates and quantities. Data is only entered in the BEHI and NBS forms and that data is used to populate the bank summary form.

There are 3 types of forms:

- 1. Bank summary form (1 form)
- 2. BEHI form (20 forms)
- 3. NBS form (Rosgen 2006) (20 forms)

The last tab also contains a Bank Erosion Rates table that was used to determine feet of erosion per year. These erosion rates are based on the combination of USFWS Bank Erosion Rates Curve and Rosgen's Colorado Bank Erosion Rates Curve.

How to Use:

- --Blue cells automatically populate
- --Green cells manually enter data

1. On the BEHI and NBS forms enter data only into the green cells.

2. On the bank summary form all the blue cells will be automatically populated with data entered in the BEHI and NBS forms. You only need to enter data

If adding extra banks

This workbook is set up to record 20 banks. There are 20 BEHI forms, 20 NBS forms, and 20 rows for banks on the bank summary sheet. If you are recording more than 20 banks you will need to add more BEHI and NBS forms by copying the forms to new tabs. You will also need to insert extra rows on the bank summary sheet. The new forms and rows will not be automatically linked.

To link the new BEHI and NBS forms to the new bank summary rows for the colums listed below, conduct the following:

1. Feature ID -use cell F6 on the BEHI form.

2. Length - use cell Y6 on the BEHI form.

3. Height - use cell A12 on the BEHI form.

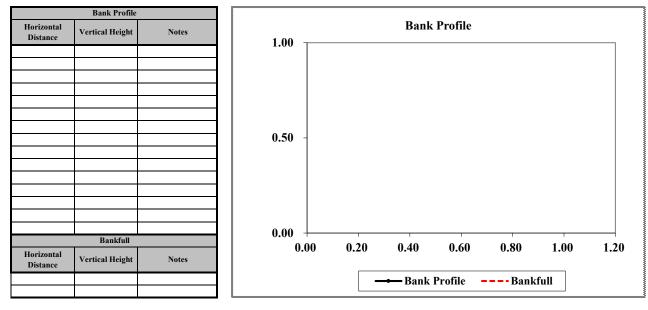
4. BEHI Rating - use cell AU5 on the BEHI form.

5. NBS Rating - use cell I52 on the NBS form.

To polpulate the new bank summary rows for the columns listed below, copy the equations from existing rows within the same column.

1. Predicted Rate of Bank Erosion (ft/yr)

2. Predicted Erosion Amount (ft3/yr)

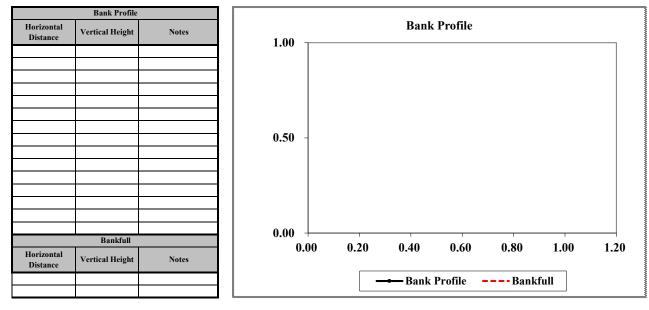

3. Predicted Erosion Amount (tons/yr)

4. Predicted Erosion Amount (tons/yr/ft)

Project Name							0				
Feature	Lat/Lo		Longth ft	Height ft			Predicted	Predicted	Predicted	Predicted	
Feature I.D.	Start	End	Length, ft (Bank or	Height, ft (Bank or	BEHI Rating	NBS Rating	Rate of Bank	Erosion	Erosion	Erosion Rate	Comments
(Bank., Headcut or Deposition I.D.)	Headcut Location or Start of Bank/Deposition	For Banks or Deposition only	deposition)	Headcut)	8	8	Erosion (ft/year)	Amount (ft ³ /year)	Amount (tons/year)	(tons/year/ft)	
	of Build Deposition	Deposition only									
LB1			75.0	4.7	Low	High	0.16	56.64	1.61	0.04	
LB2			36.0	5.6	Low	High	0.16	32.37	0.92	0.04	
LB3			31.0	5.7	Low	Low	0.02	3.53	0.10	0.01	
RB1			9.0	4.8	Moderate	Low	0.13	5.40	0.15	0.03	
RB2			51.0	8.3	Low	High	0.16	67.73	1.93	0.06	
RB3			25.0	8.2	Moderate	High	0.80	164.00	4.67	0.32	
RB4			45.0	4.6	Moderate	Low	0.13	26.10	0.74	0.03	
RB5			16.0	4.5	Moderate	Low	0.13	9.00	0.26	0.03	
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
0			0.0	0.0							
TOTAL	OF ALL GRIDS		288.0	N/A	N/A	N/A	1.7	364.8	10.4	0.5	

Stream:		Observer(s):	Data: QA/QC: T			Total Score:		13.39					
Reach:		Comments:						Low					
Location:	LBI	Bank Length		75			Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:							Values:	5-10	10-20	20-30	30-40	40-45	45-50

		E	rodibility Variabl	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extren
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LUW	Moderate	mgn	very mgn	Extrem
4.72	4.00	1.18	3.69	Low			Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	'ariable	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.0
4.72	4.72	1.00	1.00	Very Low		-	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	Erodibility	weighted Koot Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (76)	Bank Height	value	mdex	Bank Erosion Potentai	INOLES	Ero	Bank Angle	Value	0-20	21-60	61-80	81-90	91-119	>119
80.00	1.00	80.00	1.90	Very Low			Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
70.00			4.90	Moderate					Adju	istments				
Surface Protection							Bedrock	Bedrock banks	s have a very lo	w erosion pote	ntial.			
Saufa a Duata di a (0/)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low erc	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potentai	INDIES	al	Cobble	Substract 10 p	oints. No adjus	tment if sand/g	ravel compose	e greater than 5	50% of bank.	
80.00			1.90	Very Low		Material	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes		Gravel	Add 5-10 poin	ts depending o	n percentage of	f bank material	l composed of	sand.	
Bank Materials						Bank	Sand							
			Adjustment		Notes	Ba	Silt / Clay No adjustment.							
Bank Stratification								-	Stra	tification				
	TO	TAL SCORE	13.39				Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	je.	

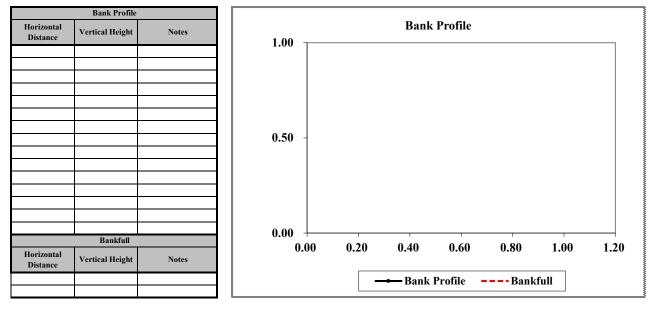


	rale.										
			Estim	ating Nea	r-Bank St	ress (NBS	5)				
Stream:					Location:						
Station:				S	tream Type:		,	Valley Type:			
Observe	rs:							Date:			
			Methods f	or Estimati	ng Near-Ba	ank Stress	(NBS)				
(1) Chanr	nel pattern,	transverse bar	or split channel	central bar crea	ating NBS		Level I	Recona	aissance		
(2) Ratio	of radius of	curvature to ba	ankfull width (R	,/W _{bkf})			Level II	General	prediction		
(3) Ratio	of pool slop	be to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction		
(4) Ratio	of pool slop	be to riffle slope	(S _n /S _{rif})				Level II		prediction		
			pth to bankfull n	nean depth (d _n	h / d _{bkf})		Level III	Detailed	prediction		
			to bankfull shea				Level III	Detailed	prediction		
		Isovels / Veloc					Level IV		lation		
_			nd/or central ba	ars-short and/o	or discontinuo	JS					
Level	(1)								BS = Extreme		
Le		Chute cutoffs	, down-valley	meander migr	ation, converg	ging flow		N	BS = Extreme		
		Radius of	Bankfull		Near-Bank						
	(2)	Curvature R _c (ft)	Width W _{bkf}	<i>Ratio</i> R _c / W _{bkf}	Stress (NBS)						
	. ,	N _c (II)	(ft)	V V bkf							
					Ne en Denle		Method	1	1		
		Pool Slope	Average		Near-Bank Stress			inant			
Level II	$\begin{array}{c c} \textbf{(3)} & ($										
-							Hi	gh			
					Near-Bank				•		
	(4)	Pool Slope	Riffle Slope	Ratio S _p /	Stress						
	(4)	Sp	S _{rif}	S _{rif}	(NBS)	1					
		Near-Bank	Maan Dauth	<i>Ratio</i> d _{nb} /	Near-Bank						
	(5)	Max Depth d _{nb} (ft)	Mean Depth d _{bkf} (ft)	d _{bkf}	Stress (NBS)						
≡			-DKI (1-7	-DKI							
Level III				Near-Bank			Bankfull				
Lev		Near-Bank		Shear			Shear		Near-Bank		
	(6)	Max Depth	Near-Bank	Stress τ_{nb} (Mean Depth		Stress τ_{bkf} (Stress		
		d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Slope S	lb/ft ²)	τ_{bkf}	(NBS)		
≥				Near-Bank							
Level IV	(7)	Velocity Grac / f	dient(ft / sec t)	Stress (NBS)							
Le		, ,	()								
Near 5	lank Str	Co ess (NBS)	nverting Va	alues to a l		Stress (NB ethod numb	, ,				
Nedi-E	rating	• •	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
	Very Lo		N/A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50		
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 - 1.00		
	Modera	ite	N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60		
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00		
	Very Hi		(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40		
	Extrem	-	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40		
					lear-Bank	°	°		gh		
							S) rating	111	311		

BANK EROSION HAZARD INDEX

Stream:		Observer(s):	Data: QA/QC: T			Total Score:		16.11					
Reach:		Comments:						Low					
Location:	LB2	Bank Length		36			Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:							Values:	5-10	10-20	20-30	30-40	40-45	45-50

		E	rodibility Variabl	es					Bank Ero	sion Potential				
Bank Height / Bankful	ll Height Ratio								Very Low	Low	Moderate	High	Very High	E
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				very Low	LOW	Woderate	mgn	very mgn	E.
5.62	4.90	1.15	2.99	Low			Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	ariable	Deed Deedh / Deede Heisht	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	
5.62	5.62	1.00	1.00	Very Low		~	Root Depth / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Weighted Root Densit	у					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	Erodibility	weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Koot Density (%)	Bank Height	value	Index	Balik Erosioli Potentai	inotes	Ero	Bonk Angle	Value	0-20	21-60	61-80	81-90	91-119	
55.00	1.00	55.00	3.90	Low			Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
60.00			3.90	Low					Adjı	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Surface Protection (%)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (76)			Index	Balik Erosioli Potentai	indies	a	Cobble	Substract 10 p	oints. No adjus	tment if sand/g	ravel compose	e greater than 5	0% of bank.	
50.00			4.32	Moderate		teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Materi	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	l composed of	sand.	
Bank Materials						Bank	Sand Add 10 points.							
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification									Strat	tification				1
	TO	TAL SCORE	16.11				Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	e.	

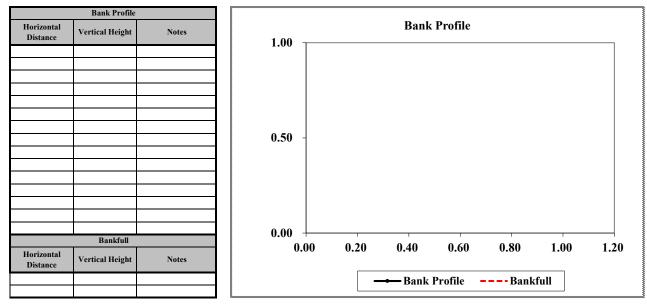

File: Bank Erosion Summary Table w-BEHI and NBS forms Black Earth Creek Sheet: BK $\#\,2$ - BEHI

erosion	Tate.											
			Estim	ating Nea	r-Bank St	ress (NBS	S)					
Stream:					Location:							
Station:				S	tream Type:		١	Valley Type:				
Observe	ers:				* ·			Date:				
			Methods f	or Estimati	ng Near-Ba	ank Stress	(NBS)					
(1) Chanr	nel pattern,	transverse bar	or split channel		-		Level I	Recona	iissance			
. ,	-		ankfull width (R				Level II	General	prediction			
			ater surface slo				Level II		prediction			
		pe to riffle slope		· · · P /			Level II		prediction			
			pth to bankfull n	nean depth (d _n	h / d _{bkf})		Level III		prediction			
			to bankfull shea				Level III		prediction			
		/ Isovels / Veloc		(115			Level IV		lation			
=		Transverse a	nd/or central b	ars-short and/	or discontinuo	JS		NBS = Hig	gh / Very High			
Level I	(1)				channel)							
Ľ		Chute cutoffs	, down-valley	meander migr	ation, converg	ing flow		NI	BS = Extreme			
		Radius of	Bankfull	<i>Ratio</i> R _c /	Near-Bank							
	(2)	Curvature R _c (ft)	Width W _{bkf} (ft)	Ratio R _c / W _{bkf}	Stress (NBS)							
			(11)	•• DKI								
					Near-Bank		Method	1				
	Pool Slope Average Stress Dominant											
eve	(3)	Sp	Slope S	Ratio S_p / S	(NBS)		Near-Bar	nk Stress				
							Hi	gh				
					Near-Bank				-			
	(4)	Pool Slope	Riffle Slope	Ratio S _p /	Stress							
	()	S _p	S _{rif}	S _{rif}	(NBS)							
		Neer Denk										
		Near-Bank Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Near-Bank Stress							
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)							
≡												
Level III				Near-Bank		,	Bankfull					
Le		Near-Bank	Near-Bank	Shear			Shear	Datia r /	Near-Bank			
	(6)	Max Depth	Slope S _{nb}	Stress τ _{nb} (lb/ft ²)	Mean Depth		Stress τ _{bkf} (Stress			
		d _{nb} (ft)	Slope S _{nb}	ID/π)	d _{bkf} (ft)	Slope S	lb/ft ²)	τ_{bkf}	(NBS)			
				N 5 1								
≥		Velocity Grad	dient (ft / sec	Near-Bank Stress								
Level IV	(7)		t)	(NBS)								
Ľ												
		<u> </u>	nverting V		vear-Bank	Strees (NP	S) Rating					
Near-E	Bank Str	ess (NBS)				ethod numb						
	rating	• •	(1)	(2)	(3)	(4)	(5)	(6)	(7)			
	Very Lo	w	N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50			
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 - 1.00			
	Modera	ate	N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60			
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00			
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40			
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40			
			Overall Near-Bank Stress (NBS) rating High									

BANK EROSION HAZARD INDEX

Stream:		Observer(s):	Data: QA/QC: T			Total Score:		19.38					
Reach:		Comments:						Low					
Location:	LB3	Bank Length		31			Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:							Values:	5-10	10-20	20-30	30-40	40-45	45-50

		E	rodibility Variabl	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Ext
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LUW	wouchate	mgn	very mgn	LA
5.70	5.08	1.12	2.47	Low			Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	'ariable	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	<
5.70	5.70	1.00	1.00	Very Low		-	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Weighted Root Densit	у					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	Erodibility	weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Root Density (%)	Bank Height	value	Index	Bank Erosion Potentai	INOICES	Ero	Bank Angle	Value	0-20	21-60	61-80	81-90	91-119	>
40.00	1.00	40.00	5.11	Moderate			Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
78.00			5.70	Moderate					Adjı	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Design and Design (0/)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potental	inotes	al	Cobble	Substract 10 p	oints. No adjus	tment if sand/g	ravel compose	e greater than 5	0% of bank.	
40.00			5.11	Moderate		Material	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes		Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	l composed of	sand.	
Bank Materials						Bank	Sand Add 10 points.							
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification								•	Strat	tification				1
	TO	TAL SCORE	19.38				Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	e.	

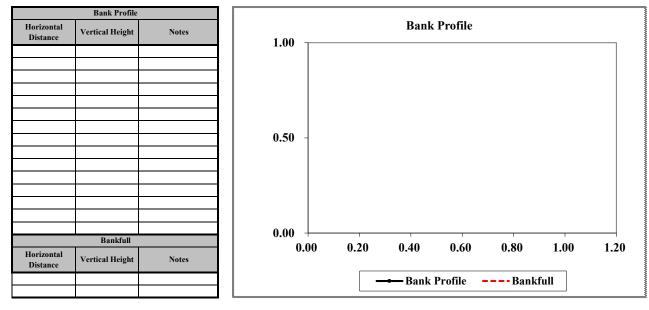


File: Bank Erosion Summary Table w-BEHI and NBS forms Black Earth Creek Sheet: BK # 3 - BEHI

erosion	Tate.								
			Estim	ating Nea	r-Bank St	ress (NBS	S)		
Stream:					Location:				
Station:				S	tream Type:		١	Valley Type:	
Observe	ers:				* ·			Date:	
			Methods f	or Estimati	ng Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar			-		Level I	Recona	iissance
. ,	-	f curvature to ba					Level II	General	prediction
		pe to average w					Level II		prediction
		pe to riffle slope		· · · P /			Level II		prediction
		nk maximum de		nean depth (d _n	h / d _{bkf})		Level III		prediction
		nk shear stress					Level III		prediction
1		/ Isovels / Veloc		(115			Level IV		lation
=		Transverse a	nd/or central b	ars-short and/	or discontinuo	JS		NBS = Hig	gh / Very High
Level I	(1)		•		channel)				
Ľ		Chute cutoffs	, down-valley	meander migr	ation, converg	ging flow		NI	BS = Extreme
		Radius of	Bankfull	<i>Ratio</i> R _c /	Near-Bank				
	(2)	Curvature R _c (ft)	Width W _{bkf} (ft)	W _{bkf}	Stress (NBS)				
			(11)	- DKI					
					Near-Bank		Method	1	
Level II	(2)	Pool Slope	Average		Stress			inant	
e v	(3)	Sp	Slope S	Ratio S _p / S	(NBS)		Near-Bar	nk Stress	
_							Lo	w	
					Near-Bank				
	(4)	Pool Slope	Riffle Slope	Ratio S _p /	Stress				
	. ,	Sp	S _{rif}	S _{rif}	(NBS)				
		Near-Bank							
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Near-Bank Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)				
≣									
Level III				Near-Bank			Bankfull Shear		
Ľ		Near-Bank Max Depth	Near-Bank	Shear Stress τ . (Mean Depth		Shear Stress τ _{bkf} (Ratio τ /	Near-Bank
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)
			. 10	10,10)			10,1C)	- JKI	
~				Near-Bank					
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress					
eve	(7)	/ f	t)	(NBS)	T				
		Co	nverting Va	alues to a l	Near-Bank	Stress (NB	S) Rating		
Near-E	Bank Str	ess (NBS)			M	ethod numb			
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 – 1.00
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very Hi	-	(1) A bovo	1.50 - 1.80	0.81 - 1.00	1.01 – 1.20	2.51 - 3.00	1.20 - 1.60	2.01 - 2.40
	Extren	lie	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	lear-Bank	Stress (NB	S) rating	Lo	w
	-								

Stream:		Observer(s):	Data: QA/QC: 7					Total Score:		20.52				
Reach:		Comments:								Moderat	te			
Location:	RB1	Bank Length			9			Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:								Values:	5-10	10-20	20-30	30-40	40-45	45-50

		E	rodibility Variabl	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Ez
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	woderate	nigii	very rigi	E2
4.80	3.80	1.26	4.40	Moderate			Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankfull Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	ariable	Deed Deedh / Deede Heischt	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	<
4.80	4.80	1.00	1.00	Very Low			Root Depth / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Weighted Root Densit	y					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	Erodibility	weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	Ι
Root Density (76)	Bank Height	value	index	Bank Erosion Potentai	ivotes	Ero	Bank Angle	Value	0-20	21-60	61-80	81-90	91-119	:
40.00	1.00	40.00	5.11	Moderate			Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	Γ
70.00			4.90	Moderate					Adjı	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Surface Protection (%)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			index	Bank Erosion Potentai	ivotes	a	Cobble	Substract 10 pe	oints. No adjus	tment if sand/g	ravel compose	greater than 5	50% of bank.	
40.00			5.11	Moderate		teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Mater	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	composed of	sand.	
Bank Materials						Bank	Sand	Add 10 points.						
			Adjustment		Notes	B	Silt / Clay	No adjustment						
Bank Stratification									Strat	tification				
	TO	TAL SCORE	20.52				Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	bankfull stag	je.	

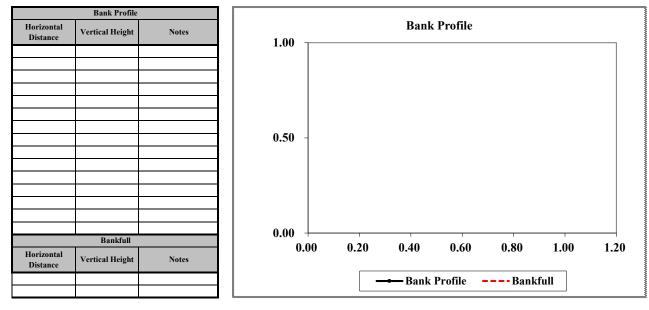


erosion	Tate.												
			Estim	ating Nea	r-Bank St	ress (NBS	S)						
Stream:					Location:								
Station:				S	tream Type:		١	Valley Type:					
Observe	ers:				* ·			Date:					
			Methods f	or Estimati	ng Near-Ba	ank Stress	(NBS)						
(1) Chanr	nel pattern,	transverse bar			-		Level I	Recona	iissance				
. ,	-	f curvature to ba					Level II	General	prediction				
		pe to average w					Level II		prediction				
		pe to riffle slope		· · · P /			Level II		prediction				
		nk maximum de		nean depth (d _n	h / d _{bkf})		Level III		prediction				
		nk shear stress					Level III		prediction				
1		/ Isovels / Veloc		(115			Level IV		lation				
=		Transverse a	nd/or central b	ars-short and/	or discontinuo	JS		NBS = Hig	gh / Very High				
Level I	(1)		•		channel)								
Ľ		Chute cutoffs	, down-valley	meander migr	ation, converg	ging flow		NI	BS = Extreme				
		Radius of	Bankfull	<i>Ratio</i> R _c /	Near-Bank								
	(2)	Curvature R _c (ft)	Width W _{bkf} (ft)	W _{bkf}	Stress (NBS)								
			(11)	- DKI									
					Near-Bank		Method	1					
Level II	(2)	Pool Slope	Average		Stress			inant					
e v	(3)	Sp	Slope S	Ratio S _p / S	(NBS)		Near-Bar	nk Stress					
_							Lo	w					
					Near-Bank								
	(4)	Pool Slope	Riffle Slope	Ratio S _p /	Stress								
	. ,	Sp	S _{rif}	S _{rif}	(NBS)								
		Near-Bank											
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Near-Bank Stress								
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)								
≣													
Level III				Near-Bank			Bankfull Shear						
Ľ		Near-Bank Max Depth	Near-Bank	Shear Stress τ . (Mean Depth		Shear Stress τ _{bkf} (Ratio τ /	Near-Bank				
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)				
			. 10	10,10)			10,1C)	- JKI					
~				Near-Bank									
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress									
eve	(7)	/ f	t)	(NBS)	T								
		Co	nverting Va	alues to a l	Near-Bank	Stress (NB	S) Rating						
Near-E	Bank Str	ess (NBS)			M	ethod numb							
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)				
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50				
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 – 1.00				
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60				
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00				
	Very Hi	-	(1) Abovo	1.50 - 1.80	0.81 - 1.00	1.01 – 1.20	2.51 - 3.00	1.20 - 1.60	2.01 - 2.40				
	Extren	lie	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40				
				Overall N	lear-Bank	Stress (NB	S) rating	Lo	w				
	-												

BANK EROSION HAZARD INDEX

Stream:		Observer(s):	Data: QA/QC: T					Total Score:		17.43				
Reach:		Comments:								Low				
Location:	RB2	Bank Length			51			Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:								Values:	5-10	10-20	20-30	30-40	40-45	45-50

		E	rodibility Variabl	es					Bank Ero	sion Potential				
Bank Height / Bankful	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extre
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LUW	wouchate	mgn	very mgn	Exue
8.30	4.00	2.08	8.26	Very High			Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.8
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankfull Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	ariable	Deed Deedh / Deede Heisht	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	<0.
8.30	8.30	1.00	1.00	Very Low		~	Root Depth / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	Erodibility	weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	value	Index	Bank Erosion Potental	inotes	Ero	Darah Arrah	Value	0-20	21-60	61-80	81-90	91-119	>11
80.00	1.00	80.00	1.90	Very Low			Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Sauda e Briste di att	Value	100-80	79-55	54-30	29-15	14-10	<1
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
53.00			3.56	Low					Adju	ustments				
Surface Protection							Bedrock	Bedrock banks	s have a very lo	w erosion pote	ntial.			
Design of Design (0/)			Tu dana	Daula Francian Datastal	Notes		Boulders	Boulder banks	have a low erc	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potental	Notes	-	Cobble	Substract 10 pe	oints. No adjus	tment if sand/g	ravel compose	greater than 5	0% of bank.	
70.00			2.71	Low		teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Materi	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	l composed of	sand.	
Bank Materials						Bank	Sand	Add 10 points.	1 0					
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification								•		tification				
TOTAL SCORE 17.43							Add 5-10	points dependin	g on position of	f unstable laye	rs in relation to	o bankfull stag	e.	

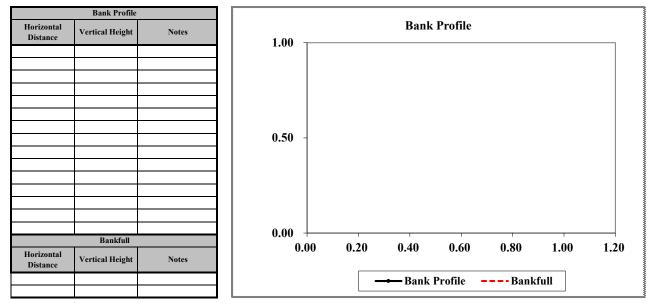

File: Bank Erosion Summary Table w-BEHI and NBS forms Black Earth Creek Sheet: BK $\#\,5$ - BEHI

erosion	Tate.												
			Estim	ating Nea	r-Bank St	ress (NBS	S)						
Stream:					Location:								
Station:				S	tream Type:		١	Valley Type:					
Observe	ers:				* ·			Date:					
			Methods f	or Estimati	ng Near-Ba	ank Stress	(NBS)						
(1) Chanr	nel pattern,	transverse bar	or split channel		-		Level I	Recona	iissance				
	-		ankfull width (R				Level II	General	prediction				
			ater surface slo				Level II		prediction				
		pe to riffle slope		· · · P /			Level II		prediction				
			pth to bankfull n	nean depth (d _n	h / d _{bkf})		Level III		prediction				
			to bankfull shea				Level III		prediction				
		/ Isovels / Veloc		(115			Level IV		lation				
=		Transverse a	nd/or central b	ars-short and/	or discontinuo	JS		NBS = Hig	gh / Very High				
Level I	(1)				channel)								
Ľ		Chute cutoffs	, down-valley	meander migr	ation, converg	ing flow		NI	BS = Extreme				
		Radius of	Bankfull	<i>Ratio</i> R _c /	Near-Bank								
	(2)	Curvature R _c (ft)	Width W _{bkf} (ft)	Ratio R _c / W _{bkf}	Stress (NBS)								
			(11)	•• DKI									
					Near-Bank		Method	1					
		Pool Slope	Average		Stress			inant					
Level II	(3)	Sp	Slope S	Ratio S_p / S	(NBS)		Near-Bar	nk Stress					
							Hi	gh					
					Near-Bank				-				
	(4)	Pool Slope	Riffle Slope	Ratio S _p /	Stress								
	()	S _p	S _{rif}	S _{rif}	(NBS)								
		Neer Denk											
		Near-Bank Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Near-Bank Stress								
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)								
≡													
Level III				Near-Bank		,	Bankfull						
Le		Near-Bank	Near-Bank	Shear			Shear	Datia r /	Near-Bank				
	(6)	Max Depth	Slope S _{nb}	Stress τ _{nb} (lb/ft ²)	Mean Depth		Stress τ _{bkf} (Stress				
		d _{nb} (ft)	Slope S _{nb}	ID/π)	d _{bkf} (ft)	Slope S	lb/ft ²)	τ_{bkf}	(NBS)				
				N 5 1									
≥		Velocity Grad	dient (ft / sec	Near-Bank Stress									
Level IV	(7)		t)	(NBS)									
Ľ													
		<u> </u>	nverting V		vear-Bank	Strees (NP	S) Rating						
Near-E	Bank Str	ess (NBS)				ethod numb							
	rating	• •	(1)	(2)	(3)	(4)	(5)	(6)	(7)				
	Very Lo	w	N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50				
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 - 1.00				
	Modera	ate	N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60				
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00				
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40				
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40				
				Overall N	lear-Bank	Stress (NB	S) rating	Hi	gh				

BANK EROSION HAZARD INDEX

Stream:		Observer(s):	Data: QA/QC: T					Total Score:		26.84				
Reach:		Comments:								Moderat	te			
Location:	RB3	Bank Length			25			Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:								Values:	5-10	10-20	20-30	30-40	40-45	45-50

		E	rodibility Variabl	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Ext
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LUW	wouchate	mgn	very mgn	LAI
8.20	4.00	2.05	8.14	Very High			Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankfull Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	1
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	ariable	Deed Deedh / Deede Heisht	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	<
8.20	8.20	1.00	1.00	Very Low		~	Root Depth / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	1
Weighted Root Densit	у					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	Erodibility	weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	1
Root Density (%)	Bank Height	value	Index	Balik Erosioli Potentai	ivotes	Ero	Darah Awala	Value	0-20	21-60	61-80	81-90	91-119	>
25.00	1.00	25.00	6.54	High			Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	1
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	1
85.00			6.84	High					Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Design and Design (0/)			Tu dana	Daula Francian Datastal	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potental	Notes	-	Cobble	Substract 10 pe	oints. No adjus	tment if sand/g	ravel compose	greater than 5	0% of bank.	
50.00			4.32	Moderate		teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Materi	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	l composed of	sand.	
Bank Materials						Bank	Sand	Add 10 points.						
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification								•		tification				
TOTAL SCORE 26.84							Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	e.	

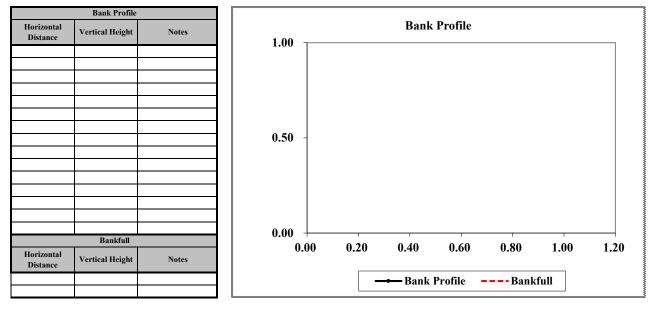


File: Bank Erosion Summary Table w-BEHI and NBS forms Black Earth Creek Sheet: BK # 6 - BEHI

erosion	Tate.												
			Estim	ating Nea	r-Bank St	ress (NBS	S)						
Stream:					Location:								
Station:				S	tream Type:		١	Valley Type:					
Observe	ers:				* ·			Date:					
			Methods f	or Estimati	ng Near-Ba	ank Stress	(NBS)						
(1) Chanr	nel pattern,	transverse bar	or split channel		-		Level I	Recona	iissance				
	-		ankfull width (R				Level II	General	prediction				
			ater surface slo				Level II		prediction				
		pe to riffle slope		· · · P /			Level II		prediction				
			pth to bankfull n	nean depth (d _n	h / d _{bkf})		Level III		prediction				
			to bankfull shea				Level III		prediction				
		/ Isovels / Veloc		(115			Level IV		lation				
=		Transverse a	nd/or central b	ars-short and/	or discontinuo	JS		NBS = Hig	gh / Very High				
Level I	(1)				channel)								
Ľ		Chute cutoffs	, down-valley	meander migr	ation, converg	ing flow		NI	BS = Extreme				
		Radius of	Bankfull	<i>Ratio</i> R _c /	Near-Bank								
	(2)	Curvature R _c (ft)	Width W _{bkf} (ft)	Ratio R _c / W _{bkf}	Stress (NBS)								
			(11)	- DKI									
					Near-Bank		Method	1					
		Pool Slope	Average		Stress			inant					
Level II	(3)	Sp	Slope S	Ratio S_p / S	(NBS)		Near-Bar	nk Stress					
							Hi	gh					
					Near-Bank				-				
	(4)	Pool Slope	Riffle Slope	Ratio S _p /	Stress								
	()	S _p	S _{rif}	S _{rif}	(NBS)								
		Neer Denk											
		Near-Bank Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Near-Bank Stress								
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)								
≡													
Level III				Near-Bank		,	Bankfull						
Le		Near-Bank	Near-Bank	Shear			Shear	Datia r /	Near-Bank				
	(6)	Max Depth	Slope S _{nb}	Stress τ _{nb} (lb/ft ²)	Mean Depth		Stress τ _{bkf} (Stress				
		d _{nb} (ft)	Slope S _{nb}	ID/π)	d _{bkf} (ft)	Slope S	lb/ft ²)	τ_{bkf}	(NBS)				
				N 5 1									
≥		Velocity Grad	dient (ft / sec	Near-Bank Stress									
Level IV	(7)		t)	(NBS)									
Ľ													
		<u> </u>	nverting V		vear-Bank	Strees (NP	S) Rating						
Near-E	Bank Str	ess (NBS)				ethod numb							
	rating	• •	(1)	(2)	(3)	(4)	(5)	(6)	(7)				
	Very Lo	w	N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50				
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 - 1.00				
	Modera	ate	N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60				
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00				
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40				
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40				
				Overall N	lear-Bank	Stress (NB	S) rating	Hi	gh				

Stream:		Observer(s):	Data: QA/QC: T					Total Score:		26.85				
Reach:		Comments:								Moderat	te			
Location:	RB4	Bank Length			45			Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:								Values:	5-10	10-20	20-30	30-40	40-45	45-50

		E	rodibility Variabl	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extrem
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	woderate	rigii	very rigi	Extrem
4.64	3.80	1.22	4.13	Moderate			Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankfull Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	Variable	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
2.90	4.64	0.63	3.29	Low			Root Depth / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	y					Erodibility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dib	weighted Koot Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (70)	Bank Height	value	muex	Balik Erosioli Fotentai	ivotes	Erc	Bank Angle	Value	0-20	21-60	61-80	81-90	91-119	>119
29.00	0.63	18.13	7.48	High			Balik Aligie	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
85.00			6.84	High					Adjı	istments				
Surface Protection							Bedrock	Bedrock banks	s have a very lo	w erosion pote	ntial.			
Surface Protection (%)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Balik Erosioli Potentai	inotes	a	Cobble	Substract 10 p	oints. No adjus	tment if sand/g	ravel compose	e greater than 5	50% of bank.	
40.00			5.11	Moderate		teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Materi	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	l composed of	sand.	
Bank Materials						Bank	Sand	Add 10 points.						
			Adjustment		Notes	B	Silt / Clay	No adjustment						
Bank Stratification									Strat	tification				
	TOTAL SCORE 26.85						Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	e.	

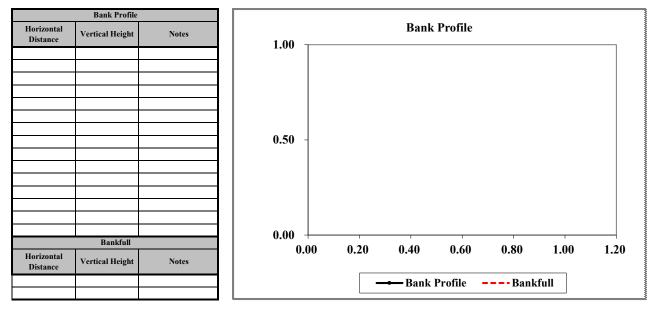


File: Bank Erosion Summary Table w-BEHI and NBS forms Black Earth Creek
Sheet: BK # 7 - BEHI

erosion	Tate.											
			Estim	ating Nea	r-Bank St	ress (NBS	S)					
Stream:					Location:							
Station:				S	tream Type:		١	Valley Type:				
Observe	ers:				* ·			Date:				
			Methods f	or Estimati	ng Near-Ba	ank Stress	(NBS)					
(1) Chanr	nel pattern,	transverse bar			-		Level I	Recona	iissance			
. ,	-	f curvature to ba					Level II	General	prediction			
		pe to average w					Level II		prediction			
		pe to riffle slope		· · · P /			Level II		prediction			
		nk maximum de		nean depth (d _n	h / d _{bkf})		Level III		prediction			
		nk shear stress					Level III		prediction			
1		/ Isovels / Veloc		(115			Level IV		lation			
=		Transverse a	nd/or central b	ars-short and/	or discontinuo	JS		NBS = Hig	gh / Very High			
Level I	(1)		•		channel)							
Ľ		Chute cutoffs	, down-valley	meander migr	ation, converg	ging flow		NI	BS = Extreme			
		Radius of	Bankfull	<i>Ratio</i> R _c /	Near-Bank							
	(2)	Curvature R _c (ft)	Width W _{bkf} (ft)	W _{bkf}	Stress (NBS)							
			(11)	- DKI								
					Near-Bank		Method	1				
Level II	(2)	Pool Slope	Average		Stress			inant				
e v	(3)	Sp	Slope S	Ratio S _p / S	(NBS)		Near-Bar	nk Stress				
_							Lo	w				
	Near-Bank											
	(4) Pool Slope Riffle Slope Ratio S _p / Stress											
	. ,	Sp	S _{rif}	S _{rif}	(NBS)							
		Near-Bank										
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Near-Bank Stress							
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)							
≣												
Level III				Near-Bank			Bankfull Shear					
Ľ		Near-Bank Max Depth	Near-Bank	Shear Stress τ . (Mean Depth		Shear Stress τ _{bkf} (Ratio τ /	Near-Bank			
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)			
			. 10	10,10)			10,1C)	- JKI				
~				Near-Bank								
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress								
eve	(7)	/ f	t)	(NBS)	T							
		Co	nverting Va	alues to a l	Near-Bank	Stress (NB	S) Rating					
Near-E	Bank Str	ess (NBS)			M	ethod numb						
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)			
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50			
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 – 1.00			
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60			
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00			
	Very Hi	-	(1) A bovo	1.50 - 1.80	0.81 - 1.00	1.01 – 1.20						
	Extren	lie	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60 > 2.40				
				Overall N	lear-Bank	Stress (NB	S) rating	Lo	w			
	-											

Stream:		Observer(s):	Data: QA/QC: T					Total Score:		25.60	25.60						
Reach:		Comments:							Moderat	Moderate							
Location:	RB5	Bank Length	16				Total Score	Very Low	Low	Moderate	High	Very High	Extreme				
Date:							Values:	5-10	10-20	20-30	30-40	40-45	45-50				

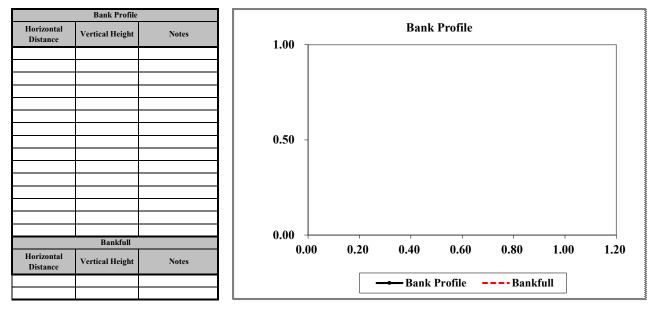
		E	rodibility Variabl	es			Bank Erosion Potential							
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	woderate	rigii	very rigi	Extreme
4.50	3.80	1.18	3.78	Low			Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankfull Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	ariable	Deed Deedh / Deede Heicht	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
3.70	4.50	0.82	2.33	Low		~	Root Depth / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	y					Erodibility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dib	weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	value	Index	Balik Erosioli Potentai	indies	Ero	Dank Analy	Value	0-20	21-60	61-80	81-90	91-119	>119
60.00	0.82	49.33	4.37	Moderate			Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
90.00			7.90	High					Adju	istments				
Surface Protection							Bedrock	Bedrock banks	s have a very lo	w erosion pote	ntial.			
Carlos Dastastica (0/)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potental	inotes	T	Cobble	Substract 10 pe	oints. No adjus	tment if sand/g	ravel compose	greater than 5	50% of bank.	
20.00			7.22	High		teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Mat	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	composed of	sand.	
Bank Materials						Bank	Sand	Add 10 points.						
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification								•	Strat	tification				
	TO	TAL SCORE	25.60				Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	je.	



File: Bank Erosion Summary Table w-BEHI and NBS forms Black Earth Creek
Sheet: BK # 8 - BEHI

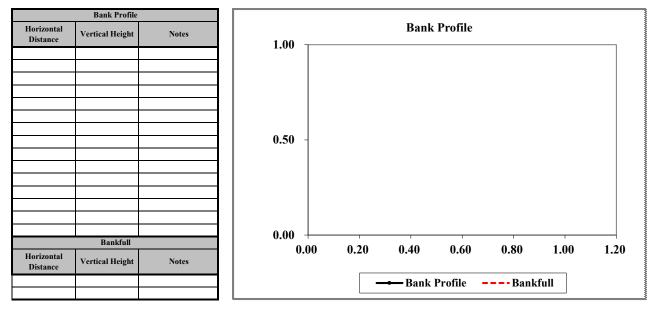
erosion	Tate.											
			Estim	ating Nea	r-Bank St	ress (NBS	S)					
Stream:					Location:							
Station:				S	tream Type:		١	Valley Type:				
Observe	ers:				* ·			Date:				
			Methods f	or Estimati	ng Near-Ba	ank Stress	(NBS)					
(1) Chanr	nel pattern,	transverse bar			-		Level I	Recona	iissance			
. ,	-	f curvature to ba					Level II	General	prediction			
		pe to average w					Level II		prediction			
		pe to riffle slope		· · · P /			Level II		prediction			
		nk maximum de		nean depth (d _n	h / d _{bkf})		Level III		prediction			
		nk shear stress					Level III		prediction			
1		/ Isovels / Veloc		(115			Level IV		lation			
=		Transverse a	nd/or central b	ars-short and/	or discontinuo	JS		NBS = Hig	gh / Very High			
Level I	(1)		•		channel)							
Ľ		Chute cutoffs	, down-valley	meander migr	ation, converg	ging flow		NI	BS = Extreme			
		Radius of	Bankfull	<i>Ratio</i> R _c /	Near-Bank							
	(2)	Curvature R _c (ft)	Width W _{bkf} (ft)	W _{bkf}	Stress (NBS)							
			(11)	- DKI								
					Near-Bank		Method	1				
Level II	(2)	Pool Slope	Average		Stress			inant				
e v	(3)	Sp	Slope S	Ratio S _p / S	(NBS)		Near-Bar	nk Stress				
_							Lo	w				
	Near-Bank											
	(4) Pool Slope Riffle Slope Ratio S _p / Stress											
	. ,	Sp	S _{rif}	S _{rif}	(NBS)							
		Near-Bank										
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Near-Bank Stress							
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)							
≣												
Level III				Near-Bank			Bankfull Shear					
Ľ		Near-Bank Max Depth	Near-Bank	Shear Stress τ . (Mean Depth		Shear Stress τ _{bkf} (Ratio τ /	Near-Bank			
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)			
			. 10	10,10)			10,1C)	- JKI				
~				Near-Bank								
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress								
eve	(7)	/ f	t)	(NBS)	T							
		Co	nverting Va	alues to a l	Near-Bank	Stress (NB	S) Rating					
Near-E	Bank Str	ess (NBS)			M	ethod numb						
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)			
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50			
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 – 1.00			
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60			
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00			
	Very Hi	-	(1) A bovo	1.50 - 1.80	0.81 - 1.00	1.01 – 1.20						
	Extren	lie	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60 > 2.40				
				Overall N	lear-Bank	Stress (NB	S) rating	Lo	w			
	-											

Stream:	Observer(s):	Data: QA/QC: To										
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	rodibility Variable	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	woderate	rigii	very nigh	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	riabl	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dibilit	weighted Koot Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Koot Density (76)	Bank Height	value	Index	Bank Erosion Potentai	INOLES	Era	Daris Anala	Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
									Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Courfe on Durate ation (0/)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potentai	INOTES	al	Cobble	Substract 10 p	oints. No adjust	tment if sand/g	ravel compose	greater than 5	0% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Mai	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	composed of	sand.	
Bank Materials						ınk	Sand	Add 10 points.						
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification	Bank Stratification						-	•	Strat	tification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	e.	

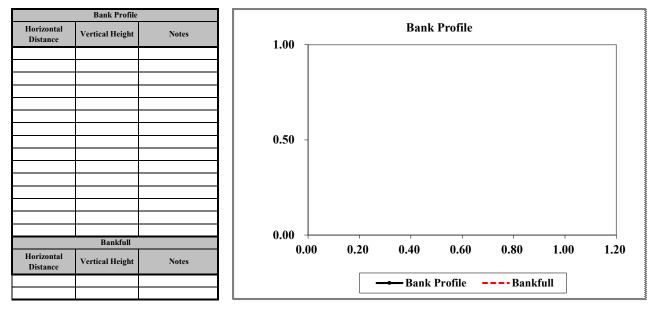
	Tate.									
			Estim	ating Nea	r-Bank St	ress (NBS	5)			
Stream:					Location:					
Station:				S	tream Type:		N N	Valley Type:		
Observe	ers:							Date:		
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)			
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance	
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction	
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction	
(4) Ratio	of pool slo	pe to riffle slope	(S _p /S _{rif})				Level II	General	prediction	
(5) Ratio	of near-bai	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction	
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction	
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation	
Ξ					or discontinuo			-		
Level I	(1)				channel)					
				meander migr	ation, converg	ing flow		NI	35 = Extreme	
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress					
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)					
_					Near-Bank		Method			
ell	(3)	Pool Slope	Average		Stress			inant		
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress		
_										
					Near-Bank					
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)					
		Op	Ont	Ont						
		Near-Bank			Near-Bank					
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress					
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1				
Level III										
eve				Near-Bank Shear			Bankfull Shear			
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank	
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)	
		TID ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank						
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress						
-ev	(7)	/ f	it)	(NBS)	1					
_										
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating			
Near-E	Bank Str	ess (NBS)			M	ethod numb	er			
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50	
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 – 1.00	
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60	
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00	
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40	
	Extren	ne	Above < 1.50 > 1.00 > 1.20 > 3.00 > 1.60 > 2							
				Overall N	Near-Bank	Stress (NB	S) rating			

Stream:	Observer(s):	Data: QA/QC: To										
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	Crodibility Variabl	es			Bank Erosion Potential							
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	Moderate	rigi	very rigi	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	eight Ratio					bles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	rial	Deed Deedh / Deede Heicht	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Depth / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	y					ility	Wei-hard De et Dereiter	Value	100-80	79-55	54-30	29-15	14-5	<5
Deat Density (0/)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dibilit	Weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	Value	Index	Bank Erosion Potental	Notes	Ero		Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle								Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
· · · /									Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
			T 1		NT /		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potental	Notes	F	Cobble	Substract 10 p	oints. No adjus	tment if sand/g	ravel compose	e greater than 5	50% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Mat	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank materia	l composed of	sand.	
Bank Materials						nk	Sand	Add 10 points.		· · ·				
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification								·	Strat	tification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	je.	

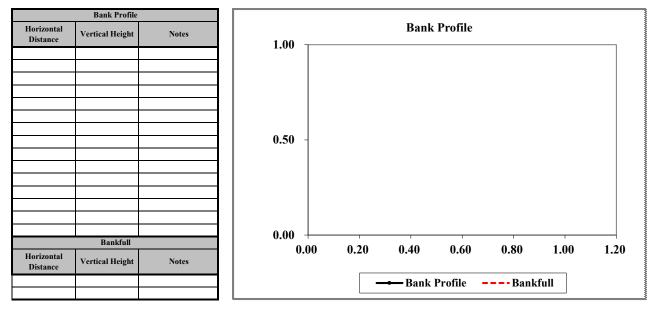
	Tate.									
			Estim	ating Nea	r-Bank St	ress (NBS	5)			
Stream:					Location:					
Station:				S	tream Type:		N N	Valley Type:		
Observe	ers:							Date:		
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)			
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance	
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction	
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction	
(4) Ratio	of pool slo	pe to riffle slope	(S _p /S _{rif})				Level II	General	prediction	
(5) Ratio	of near-bai	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction	
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction	
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation	
Ξ					or discontinuo			-		
Level I	(1)				channel)					
				meander migr	ation, converg	ing flow		NI	35 = Extreme	
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress					
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)					
_					Near-Bank		Method			
ell	(3)	Pool Slope	Average		Stress			inant		
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress		
_										
					Near-Bank					
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)					
		Op	Ont	Ont						
		Near-Bank			Near-Bank					
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress					
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1				
Level III										
eve				Near-Bank Shear			Bankfull Shear			
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank	
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)	
		TID ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank						
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress						
-ev	(7)	/ f	it)	(NBS)	1					
_										
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating			
Near-E	Bank Str	ess (NBS)			M	ethod numb	er			
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50	
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 – 1.00	
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60	
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00	
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40	
	Extren	ne	Above < 1.50 > 1.00 > 1.20 > 3.00 > 1.60 > 2							
				Overall N	Near-Bank	Stress (NB	S) rating			

Stream:	Observer(s):	Data: QA/QC: T					Total Score:						
Reach:	Comments:												
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme	
Date:							Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	rodibility Variable	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	woderate	rigii	very nigh	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	riabl	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dibilit	weighted Koot Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Koot Density (76)	Bank Height	value	Index	Bank Erosion Potentai	INOLES	Era	Daris Anala	Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
									Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Courte on Durate ation (0/)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potentai	INOTES	al	Cobble	Substract 10 p	oints. No adjust	tment if sand/g	ravel compose	greater than 5	0% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Mai	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	composed of	sand.	
Bank Materials						ınk	Sand	Add 10 points.						
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification							-	•	Strat	tification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	e.	

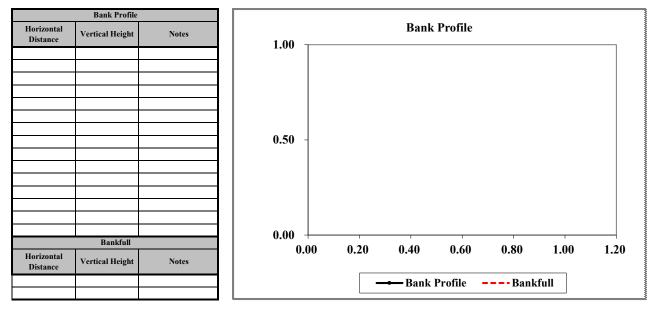
	Tate.								
			Estim	ating Nea	r-Bank St	ress (NBS	5)		
Stream:					Location:				
Station:				S	tream Type:		N N	Valley Type:	
Observe	ers:							Date:	
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p /S _{rif})				Level II	General	prediction
(5) Ratio	of near-ba	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
Ξ					or discontinuo			-	
Level I	(1)				channel)				
				meander migr	ation, converg	ing flow		NI	35 = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
_					Near-Bank		Method		
ell	(3)	Pool Slope	Average		Stress			inant	
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
					Near-Bank				
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)				
		Op	Ont	Ont					
		Near-Bank			Near-Bank				
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1			
Level III									
eve				Near-Bank Shear			Bankfull Shear		
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)
		TID ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank					
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress					
-ev	(7)	/ f	it)	(NBS)	1				
_									
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating		
Near-E	Bank Str	ess (NBS)			M	ethod numb	er		
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 – 1.00
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

Stream:	Observer(s):	Data:		QA/QC:		Total Score:						
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	Crodibility Variabl	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	Moderate	rign	very rigi	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	eight Ratio					bles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	rial	Deed Deedh / Deede Heicht	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Depth / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	y					ility	Wei-hard De et Dereiter	Value	100-80	79-55	54-30	29-15	14-5	<5
Deat Density (0/)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dibilit	Weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	Value	Index	Bank Erosion Potental	Notes	Ero		Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle								Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
· · · /									Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
			T 1		NT /		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potental	Notes	F	Cobble	Substract 10 p	oints. No adjus	tment if sand/g	ravel compose	e greater than 5	50% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Mat	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank materia	l composed of	sand.	
Bank Materials						nk	Sand	Add 10 points.		· · ·				
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification								·	Strat	tification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	je.	

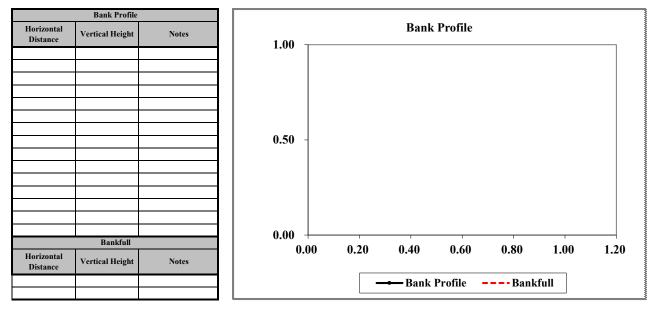
	Tate.								
			Estim	ating Nea	r-Bank St	ress (NBS	5)		
Stream:					Location:				
Station:				S	tream Type:		N N	Valley Type:	
Observe	ers:							Date:	
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p /S _{rif})				Level II	General	prediction
(5) Ratio	of near-ba	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
Ξ					or discontinuo			-	
Level I	(1)				channel)				
				meander migr	ation, converg	ing flow		NI	35 = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
_					Near-Bank		Method		
ell	(3)	Pool Slope	Average		Stress			inant	
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
					Near-Bank				
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)				
		Op	Ont	Ont					
		Near-Bank			Near-Bank				
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1			
Level III									
eve				Near-Bank Shear			Bankfull Shear		
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)
		TID ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank					
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress					
-ev	(7)	/ f	it)	(NBS)	1				
_									
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating		
Near-E	Bank Str	ess (NBS)			M	ethod numb	er		
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 – 1.00
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

Stream:	Observer(s):	Data:		QA/QC:		Total Score:						
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	rodibility Variable	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	woderate	rigii	very nigh	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	riabl	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dibilit	weighted Koot Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Koot Density (76)	Bank Height	value	Index	Bank Erosion Potentai	INOLES	Era	Daris Anala	Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
									Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Courte on Durate ation (0/)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potentai	INOTES	al	Cobble	Substract 10 p	oints. No adjust	tment if sand/g	ravel compose	greater than 5	0% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Mai	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	composed of	sand.	
Bank Materials						ınk	Sand	Add 10 points.						
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification							-	•	Strat	tification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	e.	

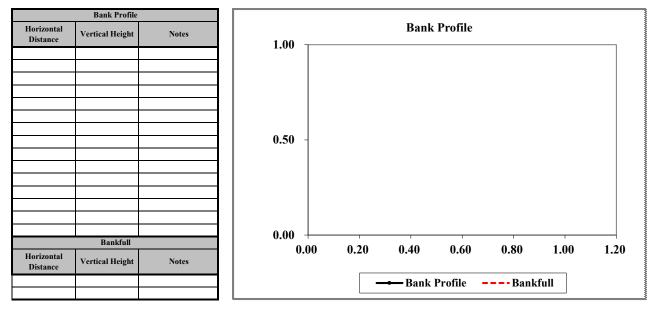
	Tate.								
			Estim	ating Nea	r-Bank St	ress (NBS	5)		
Stream:					Location:				
Station:				S	tream Type:		١. ١	Valley Type:	
Observe	ers:							Date:	
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p /S _{rif})				Level II	General	prediction
(5) Ratio	of near-bai	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
Ξ					or discontinuo			-	
Level I	(1)				channel)				
				meander migr	ation, converg	ing flow		NI	35 = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
_					Near-Bank		Method		
ell	(3)	Pool Slope	Average		Stress			inant	
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
					Near-Bank				
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)				
		Op	Ont	Ont					
		Near-Bank			Near-Bank				
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1			
Level III									
eve				Near-Bank Shear			Bankfull Shear		
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)
		TID ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank					
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress					
-ev	(7)	/ f	it)	(NBS)	1				
_									
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating		
Near-E	Bank Str	ess (NBS)			M	ethod numb	er		
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 – 1.00
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

Stream:	Observer(s):	Data:		QA/QC:		Total Score:						
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	rodibility Variabl	es					Bank Eros	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				very Low	LOW	Moderate	rign	very righ	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					bles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	rial	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					dibility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dib	weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	value	index	Bank Erosion Potentai	INOICES	Ero	Bank Angle	Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
									Adju	stments				
Surface Protection							Bedrock	Bedrock banks	have a very low	w erosion pote	ntial.			
Surface Protection (%)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			index	Bank Erosion Potentai	INOICES	al	Cobble	Substract 10 pe	oints. No adjust	ment if sand/g	ravel compose	e greater than 5	0% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Ma	Gravel	Add 5-10 poin	s depending or	n percentage of	f bank materia	l composed of	sand.	
Bank Materials						ank	Sand	Add 10 points.						
			Adjustment		Notes	B	Silt / Clay	No adjustment						
Bank Stratification									Strat	ification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation t	o bankfull stag	e.	

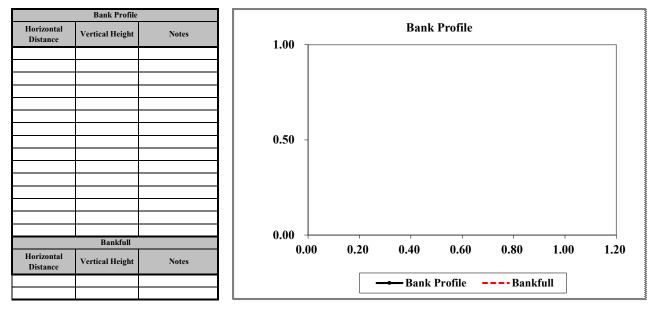
	Tate.								
			Estim	ating Nea	r-Bank St	ress (NBS	5)		
Stream:					Location:				
Station:				S	tream Type:		١. ١	Valley Type:	
Observe	ers:							Date:	
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p / S _{rif})				Level II	General	prediction
(5) Ratio	of near-bai	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
Ξ					or discontinuo			-	
Level I	(1)				channel)				
				meander migr	ation, converg	ing flow		NI	35 = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
_					Near-Bank		Method		
ell	(3)	Pool Slope	Average		Stress			inant	
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
					Near-Bank				
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)				
		Op	Ont	Ont					
		Near-Bank			Near-Bank				
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1			
Level III									
eve				Near-Bank Shear			Bankfull Shear		
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)
		TID ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank					
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress					
-ev	(7)	/ f	it)	(NBS)	1				
_									
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating		
Near-E	Bank Str	ess (NBS)			M	ethod numb	er		
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 – 1.00
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

Stream:	Observer(s):	Data:		QA/QC:		Total Score:						
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	rodibility Variable	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	woderate	rigii	very nigh	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					oles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	riabl	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					ility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dibilit	weighted Koot Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Koot Density (76)	Bank Height	value	Index	Bank Erosion Potentai	INOLES	Era	Daris Anala	Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
									Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Courte on Durate ation (0/)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potentai	INOTES	al	Cobble	Substract 10 p	oints. No adjust	tment if sand/g	ravel compose	greater than 5	0% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Mai	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank material	composed of	sand.	
Bank Materials						ınk	Sand	Add 10 points.						
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification							-	•	Strat	tification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	e.	

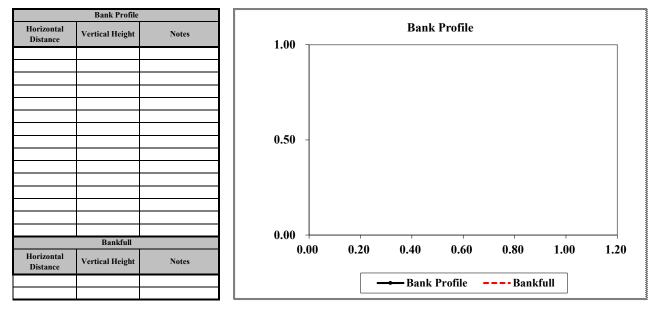
	Tate.								
			Estim	ating Nea	r-Bank St	ress (NBS	5)		
Stream:					Location:				
Station:				S	tream Type:		١. ١	Valley Type:	
Observe	ers:							Date:	
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p / S _{rif})				Level II	General	prediction
(5) Ratio	of near-bai	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
Ξ					or discontinuo			-	
Level I	(1)				channel)				
				meander migr	ation, converg	ing flow		NI	35 = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
_					Near-Bank		Method		
ell	(3)	Pool Slope	Average		Stress			inant	
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
					Near-Bank				
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)				
		Op	Ont	Ont					
		Near-Bank			Near-Bank				
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1			
Level III									
eve				Near-Bank Shear			Bankfull Shear		
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)
		TID ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank					
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress					
-ev	(7)	/ f	it)	(NBS)	1				
_									
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating		
Near-E	Bank Str	ess (NBS)			M	ethod numb	er		
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 – 1.00
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

Stream:	Observer(s):	Data:		QA/QC:		Total Score:						
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	rodibility Variabl	es					Bank Eros	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				very Low	LOW	Moderate	rign	very righ	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					bles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	rial	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					dibility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dib	weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	value	index	Bank Erosion Potentai	INOICES	Ero	Bank Angle	Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
									Adju	stments				
Surface Protection							Bedrock	Bedrock banks	have a very low	w erosion pote	ntial.			
Surface Protection (%)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			index	Bank Erosion Potentai	INOICES	al	Cobble	Substract 10 pe	oints. No adjust	ment if sand/g	ravel compose	e greater than 5	0% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Ma	Gravel	Add 5-10 poin	s depending or	n percentage of	f bank materia	l composed of	sand.	
Bank Materials						ank	Sand	Add 10 points.						
			Adjustment		Notes	B	Silt / Clay	No adjustment						
Bank Stratification									Strat	ification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation t	o bankfull stag	e.	

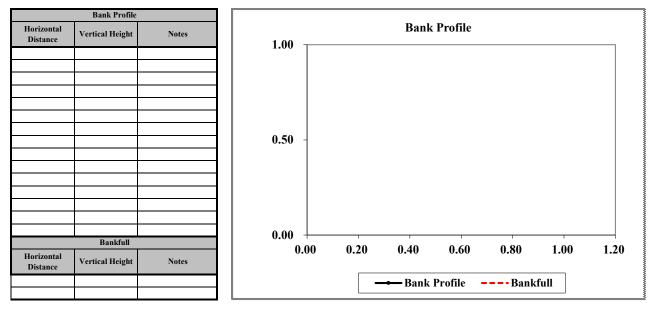
	Tate.								
			Estim	ating Nea	r-Bank St	ress (NBS	5)		
Stream:					Location:				
Station:				S	tream Type:		N N	Valley Type:	
Observe	ers:							Date:	
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p / S _{rif})				Level II	General	prediction
(5) Ratio	of near-ba	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
Ξ					or discontinuo			-	
Level I	(1)				channel)				
				meander migr	ation, converg	ing flow		NI	35 = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
_					Near-Bank		Method		
ell	(3)	Pool Slope	Average		Stress			inant	
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
					Near-Bank				
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)				
		Op	Ont	Ont					
		Near-Bank			Near-Bank				
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1			
Level III									
eve				Near-Bank Shear			Bankfull Shear		
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)
		TID ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank					
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress					
-ev	(7)	/ f	it)	(NBS)	1				
_									
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating		
Near-E	Bank Str	ess (NBS)			M	ethod numb	er		
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 – 1.00
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

Stream:	Observer(s):	Data:		QA/QC:		Total Score:						
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	Crodibility Variabl	es					Bank Ero	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	Moderate	rign	very rigi	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	eight Ratio					bles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	rial	Deed Deedh / Deede Heicht	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Depth / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	y					ility	Wei-hard De et Dereiter	Value	100-80	79-55	54-30	29-15	14-5	<5
Deat Density (0/)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dibilit	Weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	Value	Index	Bank Erosion Potental	Notes	Ero		Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle								Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
· · · /									Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
			T 1		NT /		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potental	Notes	F	Cobble	Substract 10 p	oints. No adjus	tment if sand/g	ravel compose	e greater than 5	50% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Mat	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank materia	l composed of	sand.	
Bank Materials						nk	Sand	Add 10 points.		· · ·				
			Adjustment		Notes	Ba	Silt / Clay	No adjustment						
Bank Stratification								·	Strat	tification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation to	o bankfull stag	je.	

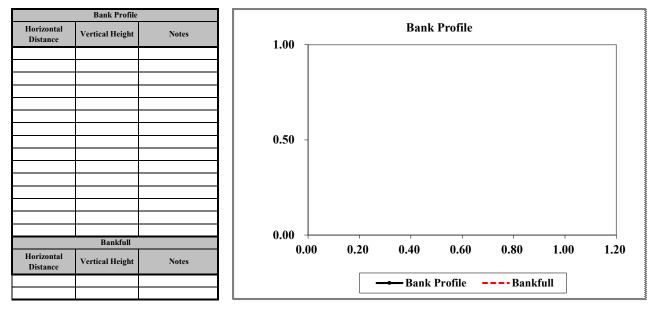
	Tate.								
			Estim	ating Nea	r-Bank St	ress (NBS	5)		
Stream:					Location:				
Station:				S	tream Type:		N N	Valley Type:	
Observe	ers:							Date:	
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p /S _{rif})				Level II	General	prediction
(5) Ratio	of near-bai	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
Ξ					or discontinuo			-	
Level I	(1)				channel)				
				meander migr	ation, converg	ing flow		NI	35 = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
_					Near-Bank		Method		
ell	(3)	Pool Slope	Average		Stress			inant	
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
					Near-Bank				
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)				
		Op	Ont	Ont					
		Near-Bank			Near-Bank				
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1			
Level III									
eve				Near-Bank Shear			Bankfull Shear		
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)
		TID ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank					
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress					
-ev	(7)	/ f	it)	(NBS)	1				
_									
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating		
Near-E	Bank Str	ess (NBS)			M	ethod numb	er		
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 – 1.00
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

Stream:	Observer(s):	Data:		QA/QC:		Total Score:						
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


		E	rodibility Variabl	es					Bank Eros	sion Potential				
Bank Height / Bankfu	ll Height Ratio								Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				very Low	LOW	Moderate	rign	very righ	Extreme
							Bank Height / Bankfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank He	ight Ratio					bles	Bank Height / Bankiun Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	rial	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					dibility	Weighted Root Density	Value	100-80	79-55	54-30	29-15	14-5	<5
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dib	weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	value	index	Bank Erosion Potentai	INOICES	Ero	Bank Angle	Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle							Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
									Adju	stments				
Surface Protection							Bedrock	Bedrock banks	have a very low	w erosion pote	ntial.			
Surface Protection (%)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			index	Bank Erosion Potentai	INOICES	al	Cobble	Substract 10 pe	oints. No adjust	ment if sand/g	ravel compose	e greater than 5	0% of bank.	
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Ma	Gravel	Add 5-10 poin	s depending or	n percentage of	f bank materia	l composed of	sand.	
Bank Materials						ank	Sand	Add 10 points.						
			Adjustment		Notes	B	Silt / Clay	No adjustment						
Bank Stratification									Strat	ification				
	TO	TAL SCORE					Add 5-10	points dependin	g on position o	f unstable laye	rs in relation t	o bankfull stag	e.	

	Tate.								
			Estim	ating Nea	r-Bank St	ress (NBS	5)		
Stream:					Location:				
Station:				S	tream Type:		N N	Valley Type:	
Observe	ers:							Date:	
			Methods for	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	or split channel	/central bar crea	ating NBS		Level I	Recona	iissance
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p /S _{rif})				Level II	General	prediction
(5) Ratio	of near-bai	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-bai	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
Ξ					or discontinuo			-	
Level I	(1)				channel)				
				meander migr	ation, converg	ing flow		NI	35 = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
_					Near-Bank		Method		
ell	(3)	Pool Slope	Average		Stress			inant	
Level II	(3)	S _p	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
					Near-Bank				
	(4)	Pool Slope S _p	Riffle Slope S _{rif}	<i>Ratio</i> S _p / S _{rif}	Stress (NBS)				
		Op	Ont	Ont					
		Near-Bank			Near-Bank				
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)	1			
Level III									
eve				Near-Bank Shear			Bankfull Shear		
	(6)	Near-Bank Max Depth	Near-Bank		Mean Depth	Average	Stress τ _{bkf} (Ratio τ _{nh} /	Near-Bank
	(6)	d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	d _{bkf} (ft)	Average Slope S	lb/ft ²)	τ _{bkf}	Stress (NBS)
		110 ()	. 115		DRI ()	Cicpe C		DRI	(
~				Near-Bank					
Level IV	(7)	Velocity Grad	dient (ft / sec	Stress					
-ev	(7)	/ f	it)	(NBS)	1				
_									
		Co	nverting Va	alues to a N	Near-Bank	Stress (NB	S) Rating		
Near-E	Bank Str	ess (NBS)			M	ethod numb	er		
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low		N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 – 1.05	0.50 – 1.00
	Modera		N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High		See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very Hi	-	(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

Stream:	Observer(s):	Data:		QA/QC:		Total Score:						
Reach:	Comments:											
Location:	Bank Length					Total Score	Very Low	Low	Moderate	High	Very High	Extreme
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50


Erodibility Variables							Bank Erosion Potential							
Bank Height / Bankfull Height Ratio									Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	Moderate	rign	very rigi	Extreme
							Poult Height / Poultfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank Height Ratio				bles	Ind		1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10		
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	rial	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					Value Value		100-80	79-55	54-30	29-15	14-5	<5	
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dibilit	Weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	value	Index	Bank Erosion Potentai	ivotes	Era	Bank Angle	Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle					Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10		
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
									Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Surface Protection (%)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potentai	ivotes	al	Cobble	Substract 10 p	points. No adjustment if sand/gravel compose greater than 50% of bank.					
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Ma	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank materia	l composed of	sand.	
Bank Materials						ank	Sand	Add 10 points.						
Adjustment Notes				Bs	Silt / Clay No adjustment.									
Bank Stratification							Stratification							
	TO	TAL SCORE					Add 5-10 points depending on position of unstable layers in relation to bankfull stage.							

	Tate.								
Estimating Near-Bank Stress (NBS)									
Stream:					Location:				
Station:				S	tream Type:		١. ١	Valley Type:	
Observers: Date:									
			Methods f	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	Level I	Recona	iissance				
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p /S _{rif})				Level II	General	prediction
(5) Ratio	of near-ba	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-ba	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
-					or discontinuo			-	
Level I	(1)				channel)				
Ľ				meander migr	ation, converg	jing flow		NI	3S = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
					Near-Bank		Method		
Level II	(2)	Pool Slope	Average		Stress		Dom	inant	
-ev	(3)	Sp	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
				- " - "	Near-Bank				
	(4)	Pool Slope	Riffle Slope	Ratio S _p /	Stress				
	()	S _p	S _{rif}	S _{rif}	(NBS)				
		Near-Bank							
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Near-Bank Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)				
≡									
Level III				Near-Bank			Bankfull		
Ľ		Near-Bank	Near-Bank	Shear			Shear Stress τ _{bkf} (Potio τ /	Near-Bank
	(6)	Max Depth d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	Mean Depth d _{bkf} (ft)	Average Slope S	lb/ft ²)		Stress (NBS)
			elepe ellb	10/11	u _{bkf} (it)	Slope S	10/11	τ _{bkf}	
				Near-Bank					
Level IV	/ _ `	Velocity Grad	dient (ft / sec	Near-Bank Stress					
eve	(7)	-	t)	(NBS)					
		<u> </u>	nverting V	alues to a M	Near-Bank	Stress (NR	S) Rating		
Near-E	Bank Str	ess (NBS)				ethod numb	, .		
	rating	• •	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very L	ow	N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low	,	N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 - 1.00
	Modera	ate	N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High	l	See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very H		(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

Stream:	Observer(s):	Data:		QA/QC:		Total Score:						
Reach:	Comments:											
Location:	Bank Length				Total Score	Very Low	Low	Moderate	High	Very High	Extreme	
Date:						Values:	5-10	10-20	20-30	30-40	40-45	45-50

Erodibility Variables							Bank Erosion Potential							
Bank Height / Bankfull Height Ratio									Very Low	Low	Moderate	High	Very High	Extreme
Bank Height	Bankfull Height	Value	Index	Bank Erosion Potental	Notes				Very Low	LOW	Moderate	rign	very rigi	Extreme
							Poult Height / Poultfull Height	Value	1.00-1.10	1.11-1.19	1.20-1.50	1.60-2.00	2.10-2.80	>2.80
Root Depth / Bank Height Ratio				bles	Ind		1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10		
Root Depth	Bank Height	Value	Index	Bank Erosion Potental	Notes	rial	Root Depth / Bank Height	Value	1.00-0.90	0.89-0.50	0.49-0.30	0.29-0.15	0.14-0.05	< 0.05
						Va	Root Deptn / Bank Height	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Weighted Root Densit	у					Value Value		100-80	79-55	54-30	29-15	14-5	<5	
Root Density (%)	Root Depth /	Value	Index	Bank Erosion Potental	Notes	dibilit	Weighted Root Density	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Root Density (%)	Bank Height	value	Index	Bank Erosion Potentai	ivotes	Era	Bank Angle	Value	0-20	21-60	61-80	81-90	91-119	>119
							Bank Angle	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
Bank Angle					Surface Protection	Value	100-80	79-55	54-30	29-15	14-10	<10		
Bank Angle (°)			Index	Bank Erosion Potental	Notes		Surface Protection	Index	1.0-1.9	2.0-3.9	4.0-5.9	6.0-7.9	8.0-9.0	10
									Adju	istments				
Surface Protection							Bedrock	Bedrock banks	have a very lo	w erosion pote	ntial.			
Surface Protection (%)			Index	Bank Erosion Potental	Notes		Boulders	Boulder banks	have a low ero	sion potential.				
Surface Protection (%)			Index	Bank Erosion Potentai	ivotes	al	Cobble	Substract 10 p	points. No adjustment if sand/gravel compose greater than 50% of bank.					
						teri	Clay/Silt Loam	Add 5 points.						
			Adjustment		Notes	Ma	Gravel	Add 5-10 poin	ts depending or	n percentage of	f bank materia	l composed of	sand.	
Bank Materials						ank	Sand	Add 10 points.						
Adjustment Notes				Bs	Silt / Clay No adjustment.									
Bank Stratification							Stratification							
	TO	TAL SCORE					Add 5-10 points depending on position of unstable layers in relation to bankfull stage.							

	Tate.								
Estimating Near-Bank Stress (NBS)									
Stream:					Location:				
Station:				S	tream Type:		N N	Valley Type:	
Observers: Date:									
			Methods f	or Estimati	ing Near-Ba	ank Stress	(NBS)		
(1) Chanr	nel pattern,	transverse bar	Level I	Recona	iissance				
(2) Ratio	of radius o	f curvature to ba	ankfull width (R	_c / W _{bkf})			Level II	General	prediction
(3) Ratio	of pool slo	pe to average w	ater surface slo	pe(S _p /S)			Level II	General	prediction
(4) Ratio	of pool slo	pe to riffle slope	(S _p /S _{rif})				Level II	General	prediction
(5) Ratio	of near-ba	nk maximum de	pth to bankfull n	nean depth (d _n	_b / d _{bkf})		Level III	Detailed	prediction
(6) Ratio	of near-ba	nk shear stress	to bankfull shea	ir stress (τ_{nb} / τ	_{bkf})		Level III	Detailed	prediction
(7) Veloci	ity profiles	/ Isovels / Veloc	ity gradient				Level IV	Valio	lation
-					or discontinuo			-	
Level I	(1)				channel)				
Ľ				meander migr	ation, converg	jing flow		NI	3S = Extreme
		Radius of Curvature	Bankfull Width W _{bkf}	Ratio R _c /	Near-Bank Stress				
	(2)	R _c (ft)	(ft)	W _{bkf}	(NBS)				
					Near-Bank		Method		
Level II	(2)	Pool Slope	Average		Stress		Dom	inant	
-ev	(3)	Sp	Slope S	Ratio S _p / S	(NBS)	1	Near-Bar	nk Stress	
_									
				- " - "	Near-Bank				
	(4)	Pool Slope	Riffle Slope	Ratio S _p /	Stress				
	()	S _p	S _{rif}	S _{rif}	(NBS)				
		Near-Bank							
		Max Depth	Mean Depth	<i>Ratio</i> d _{nb} /	Near-Bank Stress				
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{bkf}	(NBS)				
≡									
Level III				Near-Bank			Bankfull		
Ľ		Near-Bank	Near-Bank	Shear			Shear Stress τ _{bkf} (Potio τ /	Near-Bank
	(6)	Max Depth d _{nb} (ft)	Slope S _{nb}	lb/ft ²)	Mean Depth d _{bkf} (ft)	Average Slope S	lb/ft ²)		Stress (NBS)
			elepe ellb	10/11	u _{bkf} (it)	Slope S	10/11	τ _{bkf}	
				Near-Bank					
Level IV	/ _ `	Velocity Grad	dient (ft / sec	Near-Bank Stress					
eve	(7)	-	t)	(NBS)					
		<u> </u>	nverting V	alues to a M	Near-Bank	Stress (NR	S) Rating		
Near-E	Bank Str	ess (NBS)				ethod numb	, .		
	rating	• •	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very L	ow	N / A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50
	Low	,	N / A	2.21 – 3.00	0.20 - 0.40	0.41 – 0.60	1.00 – 1.50	0.80 - 1.05	0.50 - 1.00
	Modera	ate	N / A	2.01 – 2.20	0.41 – 0.60	0.61 – 0.80	1.51 – 1.80	1.06 – 1.14	1.01 – 1.60
	High	l	See	1.81 – 2.00	0.61 – 0.80	0.81 – 1.00	1.81 – 2.50	1.15 – 1.19	1.61 – 2.00
	Very H		(1)	1.50 – 1.80	0.81 – 1.00	1.01 – 1.20	2.51 – 3.00	1.20 – 1.60	2.01 – 2.40
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40
				Overall N	Near-Bank	Stress (NB	S) rating		

BEHI	NBS	Rate
low	very low	0.017
low	low	0.020
low	moderate	0.090
low	high	0.160
low	very high	0.325
low	extreme	0.6
moderate	very low	0.09
moderate	low	0.125
moderate	moderate	0.300
moderate	high	0.800
moderate	very high	0.700
moderate	extreme	1.200
high	very low	0.250
high	low	0.400
high	moderate	0.640
high	high	1.000
high	very high	1.750
high	extreme	2.500
very high	very low	0.250
very high	low	0.400
very high	moderate	0.640
very high	high	1.000
very high	very high	1.750
very high	extreme	2.500
extreme	very low	0.15
extreme	low	1.300
extreme	moderate	1.750
extreme	high	2.500
extreme	very high	3.500
extreme	extreme	4.500

Non-highlighted rates from USFWS Bank Erosion Rate Curve Yellow Highlighted rates from Rosgen Colorado Bank Erosion Rate Blue Highlighted rates are interpolated from Rosgen Colorado Bank Erosion Rate